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Abstract—This paper presents the design of the Attitude Deter-
mination and Control System (ADCS) for the SCOUT imaging
spacecraft being developed by Andrews Space. The unique per-
formance constraints of low-cost space vehicles present control
and estimation challenges in terms of processor throughput and
sensor noise. We discuss the implementation of an ADCS able
to achieve sub 100m accuracy (at 450km altitude while pointing
30◦ off nadir) by making use of steady-state Kalman filtering
for attitude determination, low-order gravity models for orbit
propagation, and an LQR-based control system. We discuss the
impact of various noise sources on the satellites knowledge error
as well as how processor-in-the-loop testing was performed to
prove out the feasibility of running the ADCS system on the
target embedded platform.
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1. INTRODUCTION
The SCOUT spacecraft is a low-cost imaging microsatellite
being developed by Andrews Space with an expected initial
launch date in mid 2015. In its stowed launch configuration,
SCOUT has dimensions of 40 x 46 x 84 cm with a mass
of approximately 50-55 kg depending on customer configu-
ration. It can be launched in both a horizontal and vertical
orientation as a secondary payload on a variety of launch
vehicle platforms.

For attitude and position sensing, SCOUT is equipped with
two PYXIS star trackers, three rate-integrating MEMS gyros,
a three-axis magnetometer, six sun-sensing photodiodes, and
a GPS receiver.

SCOUT’s attitude control effectors are three 5 mN·m reaction
wheels and three torque rods capable of creating a dipole
moment of 15.5 A·m2.

This paper provides a summary overview of SCOUT’s atti-
tude determination system, on-board orbit propagator, feed-
back control system, as well as the six degree-of-freedom (6
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Figure 1. Top-level Simulation Overview.

DoF) simulation (Figure 1) used to prove out the functionality
of the guidance, navigation, and control (GNC) system. We
also discuss the processor-in-the-loop (PIL) testing that was
performed to ensure that the GNC system functioned given
the processing and memory constraints of the satellite’s em-
bedded flight computer (PPC405 running Linux RTOS with
64 MB SDRAM).

2. SIMULATION TRUTH MODEL
A full 6-DoF GNC simulation was created in Mathworks
Simulink R© as this allows for simplified development, auto-
matic generation of flight code, and easy integration with
our processor-in-the-loop testing. This section covers each of
the major components of the Truth Model. The core of the
simulation has evolved at Andrews Space over the course of
many years and many different projects.

ECI-to-ECEF Transformation

The ECI-to-ECEF transformation is necessary to convert
back and forth between inertially-referenced vectors and
Earth-Centered Earth-Fixed (ECEF) vectors. The math is
directly based on that found in the USNO Circular 179.[1]
However, due to processing constraints and the determinis-
tic nature of the calculations, the transformation was pre-
computed for a range of dates. Within the simulation, a simple
look-up table is used to obtain the instantaneous transforma-
tion quaternion. The accuracy of this method is <0.5 m for
spacecraft position at 450 km.

Magnetic Field Model

The Earth magnetic field model is a direct Simulink R© imple-
mentation of the International Geomagnetic Reference Field
(IGRF-11) Model.[2] The general form is based on spheri-
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cal harmonics similar to the Earth Gravity Model described
below.
V (r, θ, λ, t) =

R
∑(

R

r

)n+1 n∑
m=0

(gmn (t) cosmλ+ hm
n (t) sinmλ)Pm

n (θ)

Gravity Gradient Torque

The equations below are used to model the first-order gravity
gradient torques on the spacecraft in body coordinates [3]

Gx =
3µ

2R3
0

(Iz − Iy)a23a33

Gy =
3µ

2R3
0

(Iz − Ix)a13a33

Gz =
3µ

2R3
0

(Ix − Iy)a13a23

where µ is Earth’s gravitational parameter,R0 is the radius of
the orbit, the I terms are the spacecraft’s principle moments
of inertia, and a13, a23, and a33 are elements of the DCM
derived from the body-to-inertial attitude quaternion.

Gravity Model
The gravity model within the Truth Model is based on the
EGM96 Earth gravity model.[4] The same model is used
within the orbit propagator of the GNC Flight code, but with
fewer terms in order to speed up the calculation.

V = −µ
r
−

∞∑
n=2

n∑
m=0

µ

r

(αe

r

)n
Pn,m(ε) (Cn,m cosmλ+ Sn,m sinmλ)

Aerodynamic Force and Moment

The aero force and moment follow from basic principles

Faero =
1

2
ρSREFCDV̄

2

Maero = ~CP × Faero

where ~CP is the vector from the spacecraft’s center of mass
to its center of pressure. For the purposes of this simulation,
Both the center of mass and center of pressure are assumed
to be static with respect to the body frame. The ~CP vector
is simply the vector from the center of mass to the center of
pressure (in the body frame) projected into the local velocity
frame.

Reaction Wheel Model

The reaction wheel model accepts an acceleration command
and outputs the wheel’s velocity. First the available torque
is calculated as a function of the wheel’s current velocity. It
is assumed that motor torque falls off linearly with angular
velocity.

τmotor = τstall −
ωwheelτstall
ωwheel max

The acceleration commands are put through a transport delay
of 50 ms and bounded by the available torque.

ω̇wheel = min (ω̇cmd,
τmotor

Iwheel
)

The maximum wheel speed is software limited:

ωwheel = min (

∫
ω̇wheelδt, ωwheel max)

The motor constants ωwheel max and τstall were determined
using a parameter ID process whereby the error between
simulation and experimental data is minimized by tuning the
parameters of interest.

Torque Rod Model

The torque rod model follows from basic principles

Mtorque rod = (cDû)× ~B

where c is the command (a scalar: 0 ≤ c ≤ 1), D is the
magnetic dipole of the torque rod at full power, and û is a
unique vector that corresponds to the torque rods orientation
in body coordinates.

Base Equations of Motion

The angular equations of motion were derived from Wertz [5]

ω̇sat =
τb − ωsat × [Isatωsat + Iwheelωwheel]− Iwheelω̇wheel

Isat

where τb is the sum of disturbance torques acting on the
spacecraft including those from the magnetic torque rods.

The translation equations of motion are

ẍsat = ẍgravity + q∗ib

(
Fb

msat

)
qib

where Fb is the sum of the forces in the body frame and qib is
the inertial-to-body rotation.

3. ATTITUDE DETERMINATION
SCOUT’s attitude determination system uses solutions from
a star tracker, three-axis rate integrating gyro, and measure-
ments of reaction wheel speed to estimate angular body
rate. Attitude quaternions are not directly estimated (as in an
MEFK approach) since the star tracker itself provides a low-
noise quaternion estimate. Instead, the delayed quaternion
from the star tracker is brought up to date using the angular
body rate estimates.

The estimation process is broken into three steps which are
covered in the following three subsections.

Angular Velocity Kalman Filter

A steady-state Kalman Filter is designed to estimate the
satellite’s body angular velocity as well as drifting biases in
the gyro. The filter uses two measurements (gyro and star
tracker quaternions) as well as one input (reaction wheel
speed) per axis. Throughout this section, ηx is zero-mean
gaussian noise with standard deviation σx.

The assumed gyro model is

ωgyro = ω + b+ ηgyro

ḃ = ηb

where b is the gyro bias.
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Star tracker quaternions come in more slowly than the update
of our GNC system (1 Hz vs 10 Hz) and have a typical
delay of ∼1 sec. With this in mind, we use the following
approximate model to relate body rates to our periodic star
tracker updates.

Using the relationship between body rate and quaternion-
attitude:[6]

W (q) =

[ −q1 q0 q3 −q2
−q2 −q3 q0 q1
−q3 q2 −q1 q0

]

ω = 2W (q)q̇

Given the two most recent star tracker solutions qk and
qk−1 and the time between measurements ∆tperiod, we can
approximate delayed body rate by:

ωstar = 2W (qk)
[qk − qk−1]

∆tperiod
+ ηstar

ωstar can be thought of as the average body rate over the
interval from k to k − 1. It is assumed each measurement is
delayed by ∆tdelay meaning the average delay of ωstar will
be:

∆t =
2∆tdelay + ∆tperiod

2

Using a 1st order Padé approximate delay, a state-space
model is built to approximate the relationship between the
delayed measurement and true body angular velocity:

ẋd =
−2

∆t
xd +

4

∆t
ω

ωstar = 2W (qk−1)
[qk − qk−1]

∆tperiod
= xd − ω + ηstar

The estimator also makes use of the measured wheel velocity,
which is first numerically differenced, and then converted into
satellite velocity using the previous estimate of body angular
velocity:

ω̇wheel ≈
ωk
wheel − ωk−1

wheel

∆tGNC

ω̇meas ≈
−ωk−1 ×

[
Isatω

k−1 + Iwheelωwheel

]
− Iwheelω̇wheel

Isat

ωk−1 is the previous estimate of body angular velocity and
the inertial terms, Isat and Iwheel, are constants derived from
CAD models of the satellite.

The complete system to be estimated is:[
ω̇
ẋd
ḃ

]
=

[
03×3 03×3 03×3

I3×3
4

∆t I3×3
−2
∆t 03×3

03×3 03×3 03×3

][
ω
xd
b

]
+

[
I3×3
03×3
03×3

]
ω̇meas

[
ωstar
ωgyro

]
=

[
−I3×3 I3×3 03×3
I3×3 03×3 I3×3

][ ω
xd
b

]

which is a continuous time state-space model with the follow-

ing state vector, input, output, A, B, and C matrices:

x =

[
ω
xd
b

]
u = ω̇meas

y =

[
ωstar
ωgyro

]
A =

[
03×3 03×3 03×3

I3×3
4

∆t I3×3
−2
∆t 03×3

03×3 03×3 03×3

]

B =

[
I3×3
03×3
03×3

]

C =

[
−I3×3 I3×3 03×3
I3×3 03×3 I3×3

]

The measurement noise covariance matrix, R, is populated
using noise statistics from the star tracker and gyros:

R =

[
I3×3σ

2
star 03×3

03×3 I3×3σ
2
gyro

]
The process noise covariance matrix,Q, is diagonal and tuned
to achieve desired performance.

The gain, L, of a continuous time Kalman Filter at t =∞ can
be solved for by solving the algebraic Riccati equation:

AP + PAT − PCTR−1CP +Q = 0

L = PCTR−1

This is used to build a continuous time state-space observer:

˙̂x = Ax̂+Bu+ L(y − Cx̂)

Rearranging some terms:

˙̂x = (A− LC)x̂+ [L B]

[
y
u

]
This is a standard state-space system with matrices:

Aobs = A− LC
Bobs = [L B]

Cobs = I

This system is converted into a discrete-time state-space
system using MATLAB’s c2d function. Figure 2 shows the
roll body rate estimate, truth, and the measured gyro data over
a one minute interval.

Updating Stale Star Tracker Solutions

As previously mentioned, solutions from the star trackers
are delayed by ∆tdelay. For accurate attitude determination,
these measurements must be brought up to date.

The satellite’s body rate, ω, is estimated at every timestep
of the GNC system ∆tGNC and stored in a buffer of fixed
size. When a new star tracker solution qstar is available, it is
brought up to date using simple Euler integration:
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Figure 2. Body Rate Estimation.

q := qstar
t := tstar
while t < tnow do

q̇ :=

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

[ 0
ω(t)

]
q := q + q̇∆tGNC
t := t+ ∆tGNC
end while

Propagating Star Tracker Solutions

Because several GNC timesteps may go by without a solution
from the star tracker, it is necessary to propagate the last
solution (after being brought up to date) forward in time.
This is done using the current body rate estimate, ω, to Euler
integrate forward by one GNC timestep:

q̇ :=

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

[0
ω

]
q := q + q̇∆tGNC

Figure 3 shows the first quaternion element estimate, truth,
and the measured star tracker data over a one minute interval.

4. ORBIT PROPAGATION
The Orbit Propagator used within GNC is based on a lower
order and degree version of the gravity model used in the
Truth Model described in Section 2.

The gravity model returns the gravity acceleration vector gi
in the rotating earth-fixed frame as a function of position
in the Earth-fixed frame. Using this model, it is possible to
bring GPS measurements up-to-date as well as propagate
them forward in time using the following algorithm:
v := vold
x := xold
t := told
while t < tnow do
gi := gmodel(x)
g := gi − 2ωe × v − ωe × (ωe × x)
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Figure 3. Attitude Estimation.

x := x+ v∆torbit + 1
2g∆t2orbit

v := v + g∆torbit
t := t+ min (∆torbit, tnow − t)
end while

ωe is the angular velocity of the Earth (typically ∼7.29×10−5

rad/s around the z axis) and ∆torbit cannot be arbitrarily
small given the computational constraints placed on the GNC
system. If GNC has received a new GPS measurement, then
vold and xold will be velocity and position measurements and
told will be the associated timestamp. If there is no new GPS
measurement, then all of those values simply carry over from
the previous GNC solution and are propagated forward in
time by one GNC timestep.

5. CONTROL
Linear quadratic regulators (LQR) are widely used as optimal
feedback controllers because of their guaranteed stability
properties and desirable performance characteristics. Specifi-
cally, for a linear SISO system in which perturbations to gain
and phase lag are injected into the state feedback, the gain
margins for an undamped system will be better than -6 dB
and the phase margin will be at least ±60◦.[7]

The LQR used on SCOUT is based on a linear approximation
of the satellite’s dynamics while perfectly tracking an attitude
command.

The following rotations are defined:

• RI
S : Rotation from satellite’s body axis to inertial

• RS
C : Rotation from command to the satellite’s body axis

• RC
I : Rotation from inertial to the desired body axes

• θyx: Rotation from x to y frame in axis-angle notation

The rotation from commanded attitude to the satellite’s body
axis is:

RS
C = [RI

S ]TRI
C

Taking the time derivative:

ṘS
C = [ṘI

S ]TRI
C +RS

I Ṙ
I
C

A rotation matrix’s time derivative can be related to an
angular velocity tensor. WBA

B is defined to be the angular
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velocity of the B frame relative to the A frame measured in
B.

ṘA
B = RA

BW
BA
B

Now we can look at the rotation rates in terms of more
familiar angular velocity tensors:

RS
CW

CS
C = [RI

SW
SI
S ]TRI

C +RS
I R

I
CW

CI
C

RS
CW

CS
C = −WSI

S RS
I R

I
C +RS

I R
I
CW

CI
C

And noticing that while tracking well RS
C ≈ RC

S ≈ I

WCS
C ≈ −WSI

S +WCI
C

This allows us to relate the angular accelerations of the
commanded body frame relative to the body frame, the com-
manded body frame relative to the inertial frame, and the
body frame relative to the inertial frame (where our control
effectors create angular accelerations):

ω̇CS
C = ω̇CI

C − ω̇SI
S

ωSI
S is an the satellite’s body rate which is estimated using the

methods in Section 3.

The goal of the feedback controller is to stabilize the system
in such a way that RC

S = I , since this is the condition where
the command is being tracked. At this condition, ωCS

C ≈ −θ̇SC
is a reasonable approximation [6] that allows the following
simple relationship between the rotation vector derivative and
body-angular velocity to be derived:

θ̇SC ≈ −ωCS
C

θ̇SC ≈ ωSI
S − ωCI

C

This approximation is used to build up the simple design
model:

x =

 θtrack
θSC
θ̇SC


The fictitious state θtrack is designed so that, when stable
(θ̇track = 0), the system behaves like a first order exponential
decay:

θ̇track = τθSC + θ̇SC = 0

This gives the following:

ẋ =

 τθSC + θ̇SC
θ̇SC
θ̈SC


A =

[
03×3 τI3×3 I3×3
03×3 03×3 I3×3
03×3 03×3 03×3

]

B =

[
03×3
03×3
I3×3

]

Q and R matrices are chosen to inform the LQR solution how
to emphasize tracking of states and penalize control effort.

Q is chosen to emphasize stabilization of θtrack

Q =

[
σI3×3 03×3 03×3
03×3 03×3 03×3
03×3 03×3 03×3

]

where σ is tuned to give acceptable performance.

The R matrix is chosen to make the control effort penalty
commensurate with the expected wheel speed command
needed to create the desired acceleration:

S = I−1
wheelIsat

R = STS

Now the algebraic Riccati equation can be solved for our
control gains, Klqr:

ATP + PA− PBR−1BTP +Q = 0

Klqr = R−1BTP

This controller creates ω̇SC
S commands that should optimally

stabilize θSC near θSC = 0. This must be converted into a
wheel acceleration command since the satellite’s acceleration
cannot be directly commanded:

ω̇SI
S = −Klqr

 ∫ (τθSC + θ̇SC)δt
θSC
θ̇SC


The relationship between ω̇wheel and ω̇sat is:

0 =Isatω̇sat + ωsat × Isatωsat

+ Iwheelω̇wheel + ωsat × Iwheelωwheel

Using the above, it is possible to solve for ω̇wheel:

ω̇wheel = −I−1
wheel

[
Isat

(
−Klqr

[ ∫ (τθSC + θ̇SC)δt
θSC
θ̇SC

]

+ ω̇CI
C

)
+ ωsat ×

(
Isatωsat + Iwheelωwheel

)]

The acceleration of the commanded body frame relative to
the inertial frame, ω̇CI

C , can be thought of as a feedforward
command generated by the targeting system and fed into the
controller. If the target is stationary in inertial space (e.g., a
star), then the feedforward command is zero.

Within SCOUT’s GNC system, attitude is parameterized as
a quaternion while the feedback term in the controller itself
is required to be in axis-angle notation. The conversion to an
axis-angle vector from a quaternion is done at every GNC
timestep and can be found in [6] among other places.

Local stability of the closed loop system is only guaranteed
while the satellite is near its commanded attitude. Global
stability is suggested through simulation. Figure 4 shows the
the angular control error for 100 simulation runs. For these
runs, initial attitude was varied with initial yaw, pitch, and roll
being uniform random variables between ±180◦ and initial
angular velocity varied with initial ωx, ωy , and ωz being
uniform random variables between ±50◦s .

Figure 5 shows a more realistic step response scenario. This
time, the simulation is run with no initial body rate (e.g.,
commanding a new attitude after the satellite has already
settled out). As expected, the attitude error looks similar to
a first order exponential delay.

For simplicity, the simulations for Figures 4 and 5 are run
without the effects of controller discretization and effector
saturation.
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Figure 4. Closed Loop Step Response with Large Initial
Body Rate.
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Figure 5. Closed Loop Step Response with No Initial Body
Rate.

6. WHEEL DE-SPIN LOGIC
Three orthogonal torque rods on the SCOUT spacecraft are
used to dump momentum into the Earth’s magnetic field so
that the reaction wheels can be spun down without a change
in spacecraft attitude.

Powering the torque rods severely interferes with SCOUT’s
3-axis magnetometer. To account for this issue, magnetome-
ter readings and torque rod activity are staggered. The torque
rods are powered for 27 seconds, then shut completely off for
3 seconds, and then the cycle repeats. During the 3-second
window, the magnetometer is de-gaussed and measurements
stream into the Flight Computer. Only the final measurement
within that 3-second window is actually used. During the 27
second window, the previously measured B field is corrected
for using estimates of body angular rate. Differences due
to the translation of the satellite within Earth’s B field are
relatively small and are not accounted for. There is no need
for an on-board magnetic field model.

Body rate estimates are used to integrate the quaternion
that converts between the body coordinates at the time
of the most recent magnetometer measurement and the
current body coordinates. This algorithm is shown be-

low:
if (new magnetometer reading) then
q := [1 0 0 0]T

Bb0 := Bsensor
else

q̇ :=

q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

[ 0
ω(t)

]
q := q + q̇∆tGNC
B := R(q)Bb0
end if

Assuming the primary attitude control is able to cancel torque
disturbances (τ ), the following will typically be true:

sign(τ) = sign(ω̇wheel)

For the reaction wheels to despin, the following must be
satisfied:

sign(ω̇wheel) = −sign(ωwheel)

A simple control law to ensure this is always the case is:

τ = −ω̂wheel = − ωwheel

|ωwheel|

The torque produced by the torque rods is

τ = µ×B

Where µ is the dipole moment of the torque rod. Using the
simple control law:

−ω̂wheel = µ×B

In actuality, it is only possible to oppose the component of
−ω̂wheel which is normal to B. This component is:

−ω̂⊥wheel = −ω̂wheel + (ω̂wheel · B̂)B̂ = µ×B

Now the vector triple product can be used to solve for µ:

B×(µ×B) = B×[−ω̂wheel+(ω̂wheel·B̂)B̂] = µ(B·B)−B(B·µ)

Enforcing µ and B to be orthogonal:

B × (µ×B) = B × [−ω̂wheel + (ω̂wheel · B̂)B̂] = µ|B|2

Knowing that, the B vector is normalized:

µ = ω̂wheel ×B

From here, µ can be converted to a command to each of
the three torque rods using application-specific scaling and
conversion.

SCOUT’s torque rods are not powered in modes which
require precise pointing because of the large disturbance
torques that can be created. The torques induced by the
magnetic torque rods are not factored into the attitude control
logic mentioned earlier in this paper. Also, once the reaction
wheel speeds are below a predefined threshold, the de-spin
logic is disabled.
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7. PROCESSOR IN THE LOOP TESTING
The GNC system was designed using discrete-time transfer
functions, state-space models, and integrators with an eye to-
wards eventual autocoding and running on the flight hardware
platform.

The equations of motion, effector model, and sensor models
are run on a desktop Simulink R© platform. Sensor outputs are
pushed out at 20 Hz over a UDP interface.

GNC is autocoded into C, compiled, and then executed on the
flight hardware platform. The UDP interface is checked peri-
odically for new sensor data and fed into GNC, which iterates
and provides new effector commands. These commands are
sent back to the desktop simulation via UDP. The process is
summarized in Figure 6.

This setup allows us to look into the execution time of the
GNC system. Figure 7 shows the execution time for 1000
iterations of GNC. The mean execution time is ∼20 ms which
is well below GNC’s designed update period of 100 ms.

Lessons Learned

Processor in the loop testing led to a number of improvements
and simplifications to the GNC system which shortened total
execution time.

The Earth-Centered-Inertial to Earth-Centered-Earth-Fixed
transformation was changed from a complex calculation run
at every timestep to a quaternion-based lookup table that is
calculated a-priori. The table is designed to be valid for the
entire expected orbital lifetime of the satellite.

The onboard Kalman filter was simplified to be linear and
constant-gain to avoid computationally-costly matrix inver-
sions. Instead of estimating attitude within the Kalman filter
the star-tracker provided attitude estimates are brought up-to-
date using the angular rate estimates.

Finally, sensor inputs are sanitized to be within reasonable
ranges to protect against the potentially unforeseen conse-
quences of “garbage” data being unintentionally passed into
GNC. Rarely, GNC executation times of> 1 sec were noticed
and determined to result from very slow execution of the
pow function within libc when nonsense data was passed
to GNC. While unexpected in normal operation, a floating
A/D signal or broken GPS receiver could lead to this type
of behavior. If data is determined to be out-of-bounds it is
flagged in SCOUT’s health log so that the root cause can be
diagnosed.

8. SUMMARY
This paper provides an overview of the simulation environ-
ment, GNC solution, and processor-in-the-loop testing of
the SCOUT spacecraft being designed by Andrews Space.
Confidence in the 6-DoF simulation was gained by its use
on several prior projects without issue. The 6-DoF simulation
uses established equations of motion and, where possible,
effector models are proven against experimental data.

Confidence in the GNC solution is gained through closed-
loop simulation as well as designed-in stability margins. A
linear constant-gain Kalman filter was developed to provide
adequate state estimation while avoiding the computational
complexities of Kalman filters which require matrix inver-

6 DoF Simulation

(20 Hz)

Autocoded GNC 

on flight hardware

(10 Hz)

Sensor Measurements

20 Hz UDP

Effector Commands

10 Hz UDP

Figure 6. Processor in the Loop Flow.
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Figure 7. GNC Execution Time.

sion. For orbit propagation, a low order gravity model is
included and numerically integrated to bring GPS solutions
up to date. The controller is a linear quadratic regulator whose
global stability is suggested through simulation.

Even with the GNC system running acceptably in simulation,
it was important to make sure the execution time on the
embedded flight hardware is not overly taxing on system
resources. It was shown that GNC’s execution time was con-
siderably smaller than the designed discretization timestep of
0.1 seconds.

Ultimate verification of the GNC solution and simulation will
be demonstrated after SCOUT’s launch in mid-2015. The 6-
DoF model will be compared against data measured on-orbit
and, if needed, updates to SCOUT’s control and estimator
gains will be uploaded to the spacecraft.

Several improvements to SCOUT’s GNC system are cur-
rently being investigated. Among them, implementation of
an LQR-based control which is valid for saturated actuators
(SLQR),[8] addition of a multiplicative EKF for attitude esti-
mation (possible with improvements to the flight computer
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Figure 8. Knowledge Error Sensitivity.

processing capability), and on-board estimation of sensor
misalignments (currently done on the ground).

Sensitivity of SCOUT’s groundtrack knowledge accuracy to
various error sources was investigated using the simulation.
Eight different error sources were included in the study:

• Clock drift from true time
• Variable time delay in the reaction wheel speed sensor
• GPS noise
• Gyro rate random walk
• Gyro angle random walk
• Star tracker (PYXIS) noise
• Star tracker (PYXIS) sensor delay
• Star tracker (PYXIS) update period

The results are summarized in Figure 8. Through simula-
tion we expect the baseline groundtrack knowledge error to
have a 1-σ 1-axis value of ∼27 m at an altitude of 450km
while tracking a target 30◦ off-nadir (neglecting the effect
of sensor/camera misalignments). Each blue bar shows the
effect of removing one error source. The results indicate that
star tracker (PYXIS) error sources have the most dominant
effect on knowledge accuracy. Consequently, star tracker
throughput and delay have been flagged as desirable future
improvements.
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