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This paper assesses several metrics that measure the effectiveness of control allocation
algorithms. These algorithms are used in aerospace systems where virtual control inputs need
to be allocated among multiple actuators, e.g., the allocation of rolling moment among multiple
ailerons on an aircraft wing. The only assumptions made on the control allocation algorithm
are that (1) it is continuously differentiable throughout its domain and (2) it is scheduled using
a measurement of the operating condition of the system. Each proposed metric is expressed
as some measure of a matrix that is computed from the respective linearizations of the plant
and the control allocation algorithm. The paper makes four contributions. First, it shows how
some of the proposed metrics are correlated with the performance and robustness metrics that
are computed during linear closed-loop analysis. Second, it presents how the proposed metrics
are correlated with the grid density of the scheduling variables used in the control allocation
algorithm. Third, it shows how some of the proposed metrics can be used to detect sign reversals
in the control effectiveness of individual actuators. Fourth, it shows how the metrics may be
adjusted to account for failures in one or more actuators. These contributions are demonstrated
using a fixed-wing aircraft model. While the focus of the paper is in applying these metrics for
analysis, the metrics may also be used to aid the design of the control allocation algorithm.

I. Introduction

Modern aerospace systems often feature multiple actuators, some of which may be redundant, to meet extremely
demanding requirements on reliability and maneuverability. For example, the Boeing 777 has 14 spoilers each

with its own actuator; two actuators each for the outboard ailerons, elevators, and flaperons; and three actuators for
the single rudder [1]. The system is said to be over-actuated if the number of available actuators exceeds the degrees
of freedom to be controlled, i.e., if there are multiple ways to allocate the actuators to achieve the same state in the
control degrees of freedom. The desired state in the control degrees of freedom may be interpreted as a virtual control
command. Control allocation algorithms are used in such scenarios to optimally allocate the available actuators to
achieve the virtual control commands corresponding to the desired state in the control degrees of freedom. This requires
the control allocator, together with flight control law, to be implemented in the overall flight control system.

Conventional flight control laws are designed to generate one virtual control command for each controlled degree of
freedom. The control allocator is responsible for distributing these commands among multiple redundant actuators.
In addition to achieving the requested commands from the controller, control allocators for over-actuated systems are
designed to meet additional goals such as drag minimization, gust load alleviation, and minimizing power consumption,
while being subject to constraints on the actuator position and rate limits [2, 3]. The flight control law and/or the control
allocator may also be scheduled using one or more measurements of the operating condition to account for model
variations over the operating envelope of the system [4, 5].

The control allocation problem has been intensively studied in the literature and various allocation techniques have
been developed over the past three decades. Unconstrained linear control allocation methods such as pseudo-inverse are
introduced in [6], followed by constrained linear control allocation methods such as daisy chaining [7] and direct control
allocation [8]. More complex and customizable structures like linear and quadratic programming are leveraged in [9]
and [10]. Nonlinear programming methods are proposed in [11], [12] and [13]. A comprehensive survey on the control
allocation methods can be found in [14].

In the event of one or more actuator failures, the virtual control commands need to be effectively re-allocated among
the remaining healthy actuators in order to maintain acceptable performance [15]. If this re-allocation is properly
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achieved, then the actuator failures may be compensated without reconfiguring the flight control law. In other words, if
the physical aircraft changes due to a failure, then the control allocation algorithm can potentially abstract this change
from the controller [16]. In this regard, it is common practice to separately design the flight control law and control
allocation algorithm as components of the overall flight control system [17]. This decomposition allows one to analyze
the performance of the control allocator in isolation.

In this context, this paper proposes several metrics to measure the effectiveness of control allocation algorithms
that are continuously differentiable throughout the operating envelope and are scheduled using a measurement of
the operating condition of the system. For simplicity, the flight control law is intentionally not scheduled using
the measurement of the operating condition of the system. This helps keep the focus of the paper on assessing the
effectiveness of the control allocation algorithm as the control derivatives vary across the operating envelope. As its
main contributions, the paper shows how these proposed metrics:

1) are correlated with the key linear closed-loop performance and robustness metrics,
2) are correlated with the grid density of the scheduling variables used in the control allocation algorithm,
3) can be used to detect sign reversals in the control effectiveness of individual actuators, and
4) can be adjusted to account for saturation or failures in one or more actuators.

In addition to providing a tool to assess the effectiveness of control allocation algorithms and their impact on linear
closed-loop performance and robustness, the proposed metrics can also guide the design of such algorithms.

This paper is organized as follows: Section II presents the problem statement and Section III presents the proposed
metrics that measure the effectiveness of control allocation algorithms. Section IV introduces a numerical example
involving the lateral-directional flight dynamic model of a small fixed-wing unmanned aircraft called the UltraStick
25e that was reported in [18]. Section V applies the proposed metrics to this numerical example and demonstrates the
aforementioned contributions of the paper. Finally, Section VI concludes the paper.

II. Problem formulation

A. General closed-loop system
Consider the block diagram representation of the general closed-loop system shown in Figure 1. There are three basic

components: the plant 𝐺, the actuator dynamics Λ, and the controller 𝐾 . The outputs 𝒚 ∈ R𝑛𝑦 of the plant 𝐺 are fed to
the feedback controller 𝐾 along with the reference commands 𝒓 ∈ R𝑛𝑟 . The feedback controller uses 𝒓 and 𝒚 to generate
the actuator commands 𝒖𝑐𝑚𝑑 ∈ R𝑛𝑢 . The actuator dynamics Λ converts 𝒖𝑐𝑚𝑑 into the true actuator inputs 𝒖 ∈ R𝑛𝑢 to
the plant 𝐺. The blocks 𝐾, Λ, and 𝐺 are represented as linear, time-invariant (LTI) dynamical systems, as shown by
their functional dependence on the Laplace variable 𝑠. Additionally, the linearizations of the plant and the controller
are functions of the operating condition 𝜌 ∈ P. An imperfect measurement 𝜌𝑚 = 𝑚(𝜌), 𝑚 : P → P of the operating
condition is used to schedule the controller 𝐾 across the operating envelope P. For notational simplicity, functions (e.g.,
𝑚(𝜌)) are overloaded to also mean the value of the function evaluated at a specific input. The interpretation should be
clear from the context.

Λ(𝑠)𝐾 (𝑠, 𝜌𝑚) 𝐺 (𝑠, 𝜌)

𝑚(·) 𝜌

controller actuator dynamics plant

𝒓 𝒚𝒖𝑐𝑚𝑑 𝒖

Fig. 1 General closed-loop system.

The typical control design problem involves synthesizing 𝐾 (𝑠, ·) to satisfy several user-defined closed-loop
performance and robustness requirements across a discrete set of 𝑁 plant models {𝐺 (𝑠, 𝜌𝑖) | 𝜌𝑖 ∈ P}𝑁

𝑖=1. This problem
has been widely studied and there are several classical and modern control design techniques to directly synthesize
𝐾 (𝑠, ·) [19]. However, the problem may be simplified by explicitly considering the control degrees of freedom 𝒗 ∈ R𝑛𝑣 ,
which are an abstract representation of the control input to the plant. (For example, the rolling moment command in a
fixed-wing aircraft is a control degree of freedom whereas the aileron deflection is an actuator input.) The relative order
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between the number of actuators 𝑛𝑢 and the control degrees of freedom 𝑛𝑣 dictates whether the plant is over-actuated
(𝑛𝑢 > 𝑛𝑣 ), fully-actuated (𝑛𝑢 = 𝑛𝑣 ), or under-actuated (𝑛𝑢 < 𝑛𝑣 ). The control degrees of freedom enable the separation
of the task of control allocation from the task of feedback control [20], as shown in Figure 2.

Λ(𝑠)𝐶 (𝜌𝑚)�̄� (𝑠) 𝐽 (𝜌) �̄� (𝑠)

𝑚(·)

controller 𝐾 (𝑠, 𝜌𝑚)

feedback controller control allocator actuator dynamics control Jacobian virtual plant

plant 𝐺 (𝑠, 𝜌)

𝒓 𝒚

𝜌

𝒗𝑐𝑚𝑑 𝒖𝑐𝑚𝑑 𝒖 𝒗

Fig. 2 Decomposition of the controller and the plant.

Specifically, the controller 𝐾 (𝑠, 𝜌𝑚) is decomposed into a feedback controller �̄� (𝑠) that generates the virtual control
commands 𝒗𝑐𝑚𝑑 ∈ R𝑛𝑣 that span the control degrees of freedom and a control allocator 𝐶 (𝜌𝑚) that maps them into the
actuator commands 𝒖𝑐𝑚𝑑 . Similarly, the plant 𝐺 (𝑠, 𝜌) is decomposed into a control Jacobian 𝐽 (𝜌) that maps the true
actuator inputs 𝒖 into the virtual control inputs 𝒗 ∈ R𝑛𝑣 that span the control degrees of freedom, and a virtual plant
�̄� (𝑠) that maps 𝒗 into the outputs 𝒚. These decompositions, along with a few assumptions, allow for the design of
the feedback controller �̄� (𝑠) to be decoupled from the design of the control allocator 𝐶 (𝜌𝑚). These assumptions are
discussed next.

B. Assumptions
Assumption 1 Each component of the closed-loop system is assumed to be a continuously-differentiable nonlinear
function of its inputs and the operating condition 𝜌. This is needed to be able to compute linearizations for analysis.

Assumption 2 The virtual plant �̄� (𝑠) is intentionally assumed to be independent of the operating condition 𝜌, and the
feedback controller �̄� (𝑠) is not scheduled on the measurement 𝜌𝑚.

This assumption is not necessary in order to be able to apply the metrics that will be developed in Section III to practical
problems. These metrics are functions of only 𝐶 (𝜌𝑚) and 𝐽 (𝜌). However, this assumption is intentionally made to limit
the scope of the paper to the study of the effectiveness of the control allocator as the control Jacobian 𝐽 (𝜌) varies across
the operating envelope P. Specifically, this assumption helps avoid the need to also study the impact of scheduling
�̄� (𝑠) over the operating envelope, since that is not the focus of the paper.

Given this assumption, the linearization of the plant 𝐺 (𝑠, 𝜌) is expressed as:

¤𝒙 = 𝐴𝒙 + 𝐵𝐽 (𝜌)𝒖 (1a)
𝒚 = 𝐶𝒙 + 𝐷𝐽 (𝜌)𝒖 (1b)

where 𝐴 ∈ R𝑛𝑥×𝑛𝑥 , 𝐵 ∈ R𝑛𝑥×𝑛𝑣 , 𝐶 ∈ R𝑛𝑦×𝑛𝑥 , and 𝐷 ∈ R𝑛𝑦×𝑛𝑣 represent a state-space realization of �̄� (𝑠).

Assumption 3 The control Jacobian 𝐽 (𝜌) and the control allocator 𝐶 (𝜌𝑚) are assumed to be static systems with no
internal state.

Assumption 4 The actuator dynamics Λ(𝑠) is assumed to be diagonal: Λ(𝑠) = Λ̄(𝑠) · diag(𝒉)∗, where Λ̄(𝑠) is a
single-input single-output LTI system and 𝒉 ∈ R𝑛𝑢 is a vector of ones and zeros that stores the health of each actuator,
i.e., 𝒉𝑖 ∈ {0, 1} for 𝑖 = 1, . . . , 𝑛𝑢 .

This assumption implies that all the actuation channels are independent but share the same model. This assumption is
made in order to be able to decouple the design of �̄� (𝑠) from that of 𝐶 (𝜌𝑚). If this assumption is violated, then the

∗diag denotes an operator that acts on both vectors and square matrices. When operating on vectors, it returns a square matrix with the elements
along the diagonal. When operating on square matrices, it returns a vector with the diagonal elements.

3



control allocation effectiveness metrics developed in Section III would need to be made frequency-dependent so as to
include Λ(𝑠). As discussed in Section III.C.3, frequency-dependent metrics are not within the scope of this paper.

The vector 𝒉 captures both the effects of saturations and failures in the actuators. Specifically, if the 𝑖th actuator is
saturated or failed, then 𝒉𝑖 = 0 captures the fact that the loop-gain is zero in that channel. Therefore, if 𝑛𝑢 𝑓

denotes the
total number of saturated and failed actuators, then

∑𝑛𝑢
𝑖=1 𝒉𝑖 = 𝑛𝑢 − 𝑛𝑢 𝑓

denotes the total number of actuators available
for allocation.

Assumption 5 The feedback controller �̄� (𝑠) is designed under the assumption that the control allocator 𝐶 (𝜌𝑚)
perfectly allocates the virtual control commands 𝒗𝑐𝑚𝑑 among the actuators available for allocation. For example, if
𝑛𝑢 − 𝑛𝑢 𝑓

≥ 𝑛𝑣 , then 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝜌𝑚) = 𝐼𝑛𝑣 .

This assumption is made in order to be able to decouple the design of �̄� (𝑠) from that of 𝐶 (𝜌𝑚). It is not necessary in
order to conduct linear analysis of the entire closed-loop system.

C. Decoupling the design of �̄� and 𝐶
The decompositions discussed in Section II.A and the assumptions made in Section II.B allow for a decoupled

control design process wherein the feedback controller �̄� (𝑠) is designed only using the virtual plant �̄� (𝑠), and the
control allocator 𝐶 (𝜌𝑚) is designed only using the control Jacobian 𝐽 (𝜌𝑚). This is shown in Figure 3.

diag(𝒉)𝐶 (𝜌𝑚) 𝐽 (𝜌)

𝑚(·)

control
allocator

actuator
health

control
Jacobian

𝜌

𝒗𝑐𝑚𝑑 𝒗
𝒖𝑐𝑚𝑑 𝒖

Λ̄(𝑠) · 𝐼𝑛𝑣�̄� (𝑠) �̄� (𝑠)

feedback
controller

actuator
dynamics

virtual
plant

𝒓 𝒚𝒗𝑐𝑚𝑑 𝒗

Fig. 3 Control allocator design (left) and feedback controller design (right).

Figure 3 is essentially a block diagram manipulation of Figure 2, where Assumption 4 is used to commute Λ̄(𝑠):

𝐽 (𝜌) · Λ(𝑠) · 𝐶 (𝜌𝑚) = 𝐽 (𝜌) ·
(
Λ̄(𝑠) · diag(𝒉)

)
· 𝐶 (𝜌𝑚) = 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝜌𝑚) ·

(
Λ̄(𝑠) · 𝐼𝑛𝑣

)
(2)

and Assumption 5 is used to lift the product 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝜌𝑚) out of the feedback loop.
Therefore, given the virtual plant �̄� (𝑠), the feedback controller �̄� (𝑠) is designed using standard control design

techniques to satisfy the user-defined closed-loop performance and robustness requirements. The control allocator
𝐶 (𝜌𝑚) is separately designed using the control Jacobian 𝐽 (𝜌).

Since the decoupling of the control design process relies on Assumption 5, it is important to develop metrics that
quantify the effectiveness with which any given control allocator satisfies the assumption 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝜌𝑚) = 𝐼𝑛𝑣 .
Deficiencies in the control allocation will not only lead to a violation of Assumption 5, but will also impact the
closed-loop performance and robustness metrics, which are ultimately what matter. Therefore, any metrics that are
developed for this purpose must not only quantify the effectiveness of control allocation in terms of Assumption 5,
but must also correlate strongly with the closed-loop performance and robustness metrics that are calculated using the
original closed-loop system shown in Figure 1. The next section develops a few metrics for this purpose.

III. Metrics that measure the effectiveness of control allocation

A. Commanded-to-actual virtual control matrix
At a given operating condition 𝜌, the metrics are computed using the product𝑊 (𝜌) B 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝜌𝑚) ∈

R𝑛𝑣×𝑛𝑣 , where 𝐽 (𝜌) denotes the control Jacobian, 𝐶 (𝜌𝑚) denotes the linearization of the control allocator, and 𝒉 is
a vector of ones and zeros storing the health of each actuator. The presence of diag(𝒉) in this product implies that
rank𝑊 (𝜌) = min(𝑛𝑢 − 𝑛𝑢 𝑓

, 𝑛𝑣 ). The product 𝑊 (𝜌) is termed as the commanded-to-actual virtual control matrix
because it maps the virtual control commands 𝒗𝑐𝑚𝑑 to the virtual control inputs 𝒗. This is the input-output relationship
shown on the left side of Figure 3.
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B. Control allocation effectiveness metrics
This section proposes several metrics to quantify the effectiveness of the control allocation. Each proposed metric is

expressed as some measure of𝑊 (𝜌) that quantifies its deviation from the ideal value of 𝐼𝑛𝑣 . While some metrics help
quantify overall allocation effectiveness, others provide more granular information on the direct control authority at a
virtual control channel or severity of undesirable coupling among different channels.

1. Scale factor errors
The scale factor errors (SFE) are defined as the diagonal elements of𝑊 (𝜌). The minimum and maximum SFEs are:

min SFE = min diag(𝑊 (𝜌)) (3a)
max SFE = max diag(𝑊 (𝜌)) (3b)

where diag(·) extracts the diagonal elements of a square matrix. The minimum and maximum SFEs are important as
they indicate the worst-case degradation in the direct control authority across all virtual control channels. Deviation of
the SFEs from unity results in amplification or attenuation of the loop gain at the corresponding virtual control channel.

2. Off-diagonal norm
The off-diagonal norm 𝛾 is defined as the Frobenius norm of the off-diagonal elements of𝑊 (𝜌):

𝛾 =
𝑊 (𝜌) −𝑊 (𝜌) ◦ 𝐼𝑛𝑣


𝐹

(4)

where ◦ denotes the Hadamard product of two matrices. While the SFEs are useful in detecting degradation in the
direct control authority of the virtual control channels, the off-diagonal norm metric detects undesirable coupling across
channels. A perfect control allocation should yield 𝛾 = 0.

3. Singular values and condition number
The singular values of𝑊 (𝜌) offer insight on the directionality of the control allocation. They blend the impact of

both the diagonal and the off-diagonal elements of𝑊 (𝜌). A related metric is the condition number, which is defined as
the ratio between the maximum and minimum singular values:

𝜅 =
𝜎 (𝑊 (𝜌))
𝜎 (𝑊 (𝜌)) (5)

A large condition number (𝜅 � 1) indicates strong directionality in the control allocation [19]. If this is caused by a
large 𝜎 (𝑊 (𝜌)), then an undesirable loop gain amplification is expected at one of the virtual control channels. On the
other hand, if this is caused by a small 𝜎 (𝑊 (𝜌)), then an undesirable loop gain attenuation is expected at one of the
virtual control channels. Both of these scenarios deteriorate the overall effectiveness of control allocation.

4. Distance-to-identity
The distance-to-identity metric 𝛿𝐼 provides a direct measure of the deviation of𝑊 (𝜌) from 𝐼𝑛𝑣 . It is defined as:

𝛿𝐼 =
𝑊 (𝜌) − 𝐼𝑛𝑣


𝐹

(6)

C. Impact of actuator saturation and failures
Saturation or failure of one or more actuators may influence the control allocation effectiveness. Specifically, 𝒉𝑖 = 0

if the 𝑖th actuator is saturated or failed.

1. Saturation or undetected failure
When there are undetected failures or saturation in one or more actuators, then there are two possibilities. If

𝑛𝑢 − 𝑛𝑢 𝑓
≥ 𝑛𝑣 , then the system will remain over-actuated or become fully-actuated. In this case, although𝑊 (𝜌) will

remain full-rank, the control allocation effectiveness will deteriorate because𝑊 (𝜌) will deviate from 𝐼𝑛𝑣 . On the other
hand, if 𝑛𝑢 − 𝑛𝑢 𝑓

< 𝑛𝑣 , then the system will become under-actuated. In this case,𝑊 (𝜌) will become rank-deficient and
the control allocation effectiveness will deteriorate significantly. The metrics developed in Section III can be used to
assess the severity of the deterioration.
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2. Detected failure
If the actuator failures are detected, then the control allocator can be redesigned accordingly. In the fully-actuated

or over-actuated case (𝑛𝑢 − 𝑛𝑢 𝑓
≥ 𝑛𝑣 ), the updated 𝐶 (𝜌𝑚) should prevent any degradation in the control allocation

effectiveness. In the under-actuated case (𝑛𝑢 − 𝑛𝑢 𝑓
< 𝑛𝑣 ), the updated 𝐶 (𝜌𝑚) would have to unallocate 𝑛𝑣 − (𝑛𝑢 − 𝑛𝑢 𝑓

)
control degrees of freedom based on their predetermined priority, yielding rank𝑊 (𝜌) = 𝑛𝑢 − 𝑛𝑢 𝑓

. Although a
rank-deficient𝑊 (𝜌) would result in degraded metrics, this would be misleading when the failures are detected, as the
control reallocation would intentionally exclude some control degrees of freedom. This necessitates an adjustment to
the computation of proposed metrics.

The unallocated control degrees of freedom could be selected arbitrarily in the basis that span the subspaceR𝑛𝑣 , set by
the virtual control commands. For simplicity, the scope of this paper is limited to the case where the unallocated control
degrees or freedom are aligned with any of the virtual control commands. In this scenario, the adjustment is performed
by computing the metrics from the sub-matrix𝑊 ′(𝜌) ∈ R(𝑛𝑢−𝑛𝑢 𝑓

)×(𝑛𝑢−𝑛𝑢 𝑓
) of𝑊 (𝜌) ∈ R𝑛𝑣×𝑛𝑣 , which is extracted by

omitting the rows and the columns corresponding to the unallocated 𝑛𝑣 − (𝑛𝑢 − 𝑛𝑢 𝑓
) control degrees of freedom. For

demonstration purposes, let there be one virtual control command that is unallocated such that 𝑛𝑣 − (𝑛𝑢 − 𝑛𝑢 𝑓
) = 1. Let

𝑙 denote the index of the excluded virtual control command with 1 ≤ 𝑙 ≤ 𝑛𝑣 . Then𝑊 ′(𝜌) ∈ R(𝑛𝑣−1)×(𝑛𝑣−1) is obtained
after discarding 𝑙 th row and 𝑙 th column of𝑊 (𝜌).

𝑊 (𝜌) =



𝑤1,1 𝑤1,2 . . . 𝑤1,𝑙 . . . 𝑤1,𝑛𝑣
𝑤2,1 𝑤2,2 . . . 𝑤2,𝑙 . . . 𝑤2,𝑛𝑣
...

...
. . .

...
. . .

...

𝑤𝑙,1 𝑤𝑙,2 . . . 𝑤𝑙,𝑙 . . . 𝑤𝑙,𝑛𝑣
...

...
. . .

...
. . .

...

𝑤𝑛𝑣 ,1 𝑤𝑛𝑣 ,2 . . . 𝑤𝑛𝑣 ,𝑙 . . . 𝑤𝑛𝑣 ,𝑛𝑣


(7)

3. Frequency-dependent metrics
The metrics described thus far are independent of frequency because the control allocator is assumed to be stateless

(Assumption 3). If the control allocator includes dynamics, 𝐶 (𝑠, 𝜌𝑚), then this will yield a frequency dependent
commanded-to-actual virtual control matrix: 𝑊 (𝑠, 𝜌) B 𝐽 (𝜌) · diag(𝒉) · 𝐶 (𝑠, 𝜌𝑚). In such a scenario, the metrics
quantifying control allocation effectiveness would also vary with frequency. A detailed discussion on this topic is not
within the scope of this paper and is deferred to a future study.

IV. Numerical example
The problem formulation described in Section II and the metrics described in Section III are illustrated using a

lateral-directional flight dynamic model of a small fixed-wing unmanned aircraft called the UltraStick 25e that was
reported in [18]. While the model reported in [18] used a single aileron and rudder, an additional aileron and rudder is
added in this numerical example to make the system over-actuated. Each component of the closed-loop system shown in
Figure 2 is described in the following subsections using the notation introduced in Section II.

A. Plant and actuator dynamics models

1. Plant model 𝐺 (𝑠, 𝜌)
The plant model 𝐺 (𝑠, 𝜌) has the form:

𝑀 ¤𝒙 = 𝐴′𝒙 + 𝐵′𝒖 (8a)
𝒚 = 𝐶𝒙 (8b)

where 𝒙 = [𝑣, 𝑝, 𝑟, 𝜙, 𝜓]𝑇 ∈ R5 is the state vector, 𝒖 =
[
𝛿𝑎1 , 𝛿𝑎2 , 𝛿𝑟1 , 𝛿𝑟2

]
∈ R4 is the true actuator input vector, and

𝒚 = [𝑝, 𝑟, 𝜙] ∈ R3 is the output vector. The components of 𝒙 include the lateral velocity 𝑣, roll rate 𝑝, yaw rate 𝑟 , roll
angle 𝜙, and yaw angle 𝜓. The true actuator inputs include two different ailerons 𝛿𝑎1,2 and two different rudders 𝛿𝑟1,2 .
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The state-space matrices are given by:

𝑀 =


1 0 0 0 0
0 1 −𝐼𝑥𝑧/𝐼𝑥 0 0
0 −𝐼𝑥𝑧/𝐼𝑧 1 0 0
0 0 0 1 0
0 0 0 0 0

 𝐴′ =


𝑌𝑣 𝑌𝑝 + 𝑤0 𝑌𝑟 − 𝑢0 𝑔 cos 𝜃0 0
𝐿𝑣 𝐿𝑝 𝐿𝑟 0 0
𝑁𝑣 𝑁𝑝 𝑁𝑟 0 0
0 1 0.03 0 0
0 0 1 0 0

 𝐵′ =


𝑌𝛿𝑎1

𝑌𝛿𝑎2
𝑌𝛿𝑟1

𝑌𝛿𝑟2
𝐿𝛿𝑎1

𝐿𝛿𝑎2
𝐿𝛿𝑟1

𝐿𝛿𝑟2
𝑁𝛿𝑎1

𝑁𝛿𝑎2
𝑁𝛿𝑟1

𝑁𝛿𝑟2
0 0 0 0
0 0 0 0

 (9)

where 𝐼𝑥 , 𝐼𝑧 , and 𝐼𝑥𝑧 denote the components of the moment of inertia tensor, 𝑢0, 𝑤0, and 𝜃0 denote the trim parameters,
and 𝑌★, 𝐿★, and 𝑁★ denote the aerodynamic stability and control derivatives. The Appendix lists the values of all these
parameters. The 𝐶 matrix is not provided because it can be inferred from the 𝒙 and 𝒚 stated above. The feedthrough
matrix 𝐷 is zero.

2. Decomposition of 𝐺 (𝑠, 𝜌)
The plant model 𝐺 (𝑠, 𝜌) is decomposed as the product �̄� (𝑠) · 𝐽 (𝜌), where the virtual plant �̄� (𝑠) and the control

Jacobian 𝐽 (𝜌) have the state-space realizations:

𝑀 ¤𝒙 = 𝐴′𝒙 + 𝐵′′𝒗 (10a)
𝒗 = 𝐽 (𝜌)𝒖 (10b)

The three control degrees of freedom are spanned by the vector of virtual control inputs 𝒗 = [ ¤𝑣𝑐𝑚𝑑 , ¤𝑝𝑐𝑚𝑑 , ¤𝑟𝑐𝑚𝑑] ∈ R3

and the matrices 𝐵′′ and 𝐽 (𝜌) are given by:

𝐵′′ =

[
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

]𝑇
𝐽 (𝜌) =

[
𝑌𝛿𝑎1

𝑌𝛿𝑎2
𝑌𝛿𝑟1

𝑌𝛿𝑟2
𝐿𝛿𝑎1

𝐿𝛿𝑎2
𝐿𝛿𝑟1

𝐿𝛿𝑟2
𝑁𝛿𝑎1

𝑁𝛿𝑎2
𝑁𝛿𝑟1

𝑁𝛿𝑟2

]
(11)

While each control derivative in 𝐽 (𝜌) is a function of 𝜌, this functional dependence is suppressed in Equation (11)
for brevity. The state-space realization of �̄� (𝑠) presented in Equation (1) is recovered by noting that 𝐴 = 𝑀−1𝐴′ and
𝐵 = 𝑀−1𝐵′′.

3. Variation of 𝐽 (𝜌) over the operating envelope P
While the operating condition can be multi-dimensional in general, this numerical example considers a scalar

operating condition 𝜌 ∈ P ⊆ R for simplicity. The operating envelope P is normalized to the interval [−1, 1]. The
control Jacobian 𝐽 (𝜌) is modeled to vary over P = [−1, 1] using the aerodynamic parameter uncertainties reported in
[18]. Specifically, each control derivative in 𝐽 (𝜌) is assumed to vary linearly in the interval [𝜇 − 6𝜎, 𝜇 + 6𝜎] as 𝜌
varies in the interval P = [−1, 1]. The Appendix lists the values of the mean 𝜇 and the standard deviation 𝜎 for each
control derivative.

4. Actuator dynamics model Λ(𝑠)
The actuator dynamics Λ(𝑠) is modeled as: Λ(𝑠) = Λ̄(𝑠) · 𝐼4, where

Λ̄(𝑠) = 𝑒−0.05𝑠 2𝜋10
𝑠 + 2𝜋10

(12)

is the single-channel actuator dynamic model with a bandwidth of 10 Hz and a time delay of 50 ms.

B. Feedback controller �̄� (𝑠)
The feedback controller �̄� (𝑠) is designed using the virtual plant �̄� (𝑠), as shown on the right side of Figure 3. �̄� (𝑠)

has the following form:


¤𝑣𝑐𝑚𝑑
¤𝑝𝑐𝑚𝑑
¤𝑟𝑐𝑚𝑑

 =


0 𝐾 ¤𝑣𝜙 0 0

𝐾 ¤𝑝𝜙 (𝑠) −𝐾 ¤𝑝𝜙 (𝑠) 𝐾 ¤𝑝𝑝 0
0 0 0 𝐾 ¤𝑟𝑟



𝜙𝑐𝑚𝑑

𝜙

𝑝

𝑟


(13)
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where its inputs consist of 𝒓 = 𝜙𝑐𝑚𝑑 and 𝒚 = [𝑝, 𝑟, 𝜙] and its outputs consist of the virtual control commands
𝒗𝑐𝑚𝑑 = [ ¤𝑣𝑐𝑚𝑑 , ¤𝑝𝑐𝑚𝑑 , ¤𝑟𝑐𝑚𝑑]. The term 𝐾 ¤𝑝𝜙 (𝑠) in Equation (13) denotes a PI controller whereas all the other terms
denote static gains.

The gains of �̄� (𝑠) are tuned using the virtual plant �̄� (𝑠) to satisfy the following user-defined closed-loop performance
and robustness requirements.

1) Bandwidth of at least 6 rad s−1 in the ¤𝑝𝑐𝑚𝑑 control degree of freedom, as measured using the gain crossover
frequency of the corresponding open-loop transfer function.

2) Rise time of at most 1 s in 𝜙 when tracking a step command in 𝜙𝑐𝑚𝑑 .
3) No overshoot in 𝜙 when tracking a step command in 𝜙𝑐𝑚𝑑 .
4) Gain margin of at least 6 dB, phase margin of at least 45 deg, and disk margin [21] of at least 0.5, as measured

using the open-loop transfer functions obtained by breaking the loop at each of the three virtual control commands
𝒗𝑐𝑚𝑑 = [ ¤𝑣𝑐𝑚𝑑 , ¤𝑝𝑐𝑚𝑑 , ¤𝑟𝑐𝑚𝑑].

5) Damping ratio of at least 0.7 for every closed-loop pole.
The gains of �̄� (𝑠) are tuned using basic loopshaping techniques [22, 23] and are provided in the Appendix.

C. Control allocator 𝐶 (𝜌𝑚)
The control allocator𝐶 (𝜌𝑚) is designed using the control Jacobian 𝐽 (𝜌), as shown on the left side of Figure 3. While

the literature provides many techniques to design control allocators, a simple technique based on the pseudo-inverse of
𝐽 (𝜌) is considered in this numerical example. In this regard, the metrics proposed in Section III are not restricted to any
particular design technique and may be computed as long as the control allocator can be linearized. For the purpose of
this numerical example, three separate control allocators are designed, as explained next.

1. Nominal control allocator
The nominal control allocator 𝐶𝑛𝑜𝑚 does not have access to a measurement of the operating condition 𝜌𝑚. It is

designed using the right-inverse of the control Jacobian 𝐽0 obtained at the nominal operating condition 𝜌 = 0.

𝐶𝑛𝑜𝑚 = 𝐽
†
0 = 𝐽𝑇0 (𝐽0𝐽

𝑇
0 )−1 (14)

2. Scheduled control allocator
The scheduled control allocator 𝐶 (𝜌𝑚) uses the imperfect measurement

𝜌𝑚 = max (−1, min (1, sinh 𝜌)) (15)

of the operating condition 𝜌, where the 𝜌𝑚 is clipped to lie within the operating envelope P = [−1, 1]. Figure 4 shows
the relationship between 𝜌, sinh 𝜌, and 𝜌𝑚. The control allocator is designed by gridding the operating envelope P
into a discrete set of 𝑁 operating conditions {𝜌𝑖 ∈ P}𝑁

𝑖=1 and computing 𝐶𝑖 = 𝐽 (𝜌𝑖)† at each grid point 𝜌𝑖 . At any
intermediate measured operating condition 𝜌𝑖 ≤ 𝜌𝑚 ≤ 𝜌𝑖+1, 𝐶 (𝜌𝑚) is obtained by linearly interpolating between the
control allocators 𝐶𝑖 and 𝐶𝑖+1 computed at the neighboring grid points. In this example, P is gridded into the three grid
points {−1, 0, 1}. An alternative scheduling strategy is to linearly interpolate between the control Jacobians 𝐽 (𝜌𝑖) and
𝐽 (𝜌𝑖+1) at the neighboring grid points and compute the control allocator as its right-inverse. The approach taken in this
paper of directly interpolating between the control allocators is simply a design choice.

3. Degraded control allocator
The degraded control allocator �̄� (𝜌𝑚) is used when there are detected failures in one or more actuators, as indicated

by the presence of zeros in the vector 𝒉. This leads to two possibilities. If there are at least as many healthy actuators
as there are control degrees of freedom (𝑛𝑢 − 𝑛𝑢 𝑓

≥ 𝑛𝑣 ), then the system remains over-actuated or fully-actuated, in
which case all the control degrees of freedom may be allocated among the healthy actuators. On the other hand, if
there are fewer healthy actuators than there are control degrees of freedom (𝑛𝑢 − 𝑛𝑢 𝑓

< 𝑛𝑣 ), then the system becomes
under-actuated, in which case 𝑛𝑣 − (𝑛𝑢 − 𝑛𝑢 𝑓

) control degrees of freedom need to be excluded from the allocation. To
generalize this, let 𝒅 ∈ R𝑛𝑣 denote a vector of ones and zeros, where ones include and zeros exclude control degrees of
freedom from the allocation. The degraded control allocator at the grid point 𝜌𝑖 is designed as:

�̄�𝑖 = (diag(𝒅) · 𝐽 (𝜌𝑖) · diag(𝒉))† (16)
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−1 0 1
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0

1

𝜌

𝜌
𝑚

𝜌

sinh(𝜌)
𝜌𝑚

Fig. 4 Relationship between true and imperfect measurements.

At any intermediate measured operating condition 𝜌𝑖 ≤ 𝜌𝑚 ≤ 𝜌𝑖+1, �̄� (𝜌𝑚) is obtained by linearly interpolating between
the degraded control allocators �̄�𝑖 and �̄�𝑖+1 computed at the neighboring grid points. As with the scheduled control
allocator, the approach taken in this paper of directly interpolating between the control allocators, as opposed to the
control Jacobians, is simply a design choice.

V. Results
In this section, the numerical example introduced in Section IV is used to illustrate the contributions of this

paper. First, the relationship between proposed allocation effectiveness metrics and linear closed-loop stability and
performance metrics is discussed in Section V.A, followed by the effect of control allocator scheduling on these metrics in
Section V.B. The influence of control derivative reversals on the proposed allocation effectiveness metrics is investigated
in Section V.C. In Section V.D, impact of an undetected actuator failure yielding a fully actuated system on the control
allocation metrics is studied. Finally, the adjustment required to compute the proposed metrics in the event of detected
actuator failures leading to an under-actuated system is discussed in Section V.E.

A. Correlation between proposed metrics and linear closed-loop metrics
The variation in control derivatives across the normalized operating envelope P = [−1, 1] is provided in Figure 5.

Blue and red colors represent the intervals P− = [−1, 0] and P+ = [0, 1]. The nominal control allocator, 𝐶𝑛𝑜𝑚, is
designed at 𝜌 = 0 (i.e., P0) and does not take into account the control derivative variations across P. This deteriorates
the allocation effectiveness, which is captured by divergence of the metrics proposed in Section III: min SFE, max SFE,
𝜅, 𝛾, 𝛿𝐼 , from their ideal values (see Table 1 for design values of each metric). This is depicted in Figure 6, where the
proposed metrics for 𝐶𝑛𝑜𝑚 are plotted against 𝐿 𝛿𝑎 with solid lines.

Next, the relationship between proposed metrics that quantify the control allocation effectiveness and key closed-loop
stability and performance metrics are investigated. Specifically, the disk margin [21] and the gain crossover frequency
𝜔𝑝𝑚+ associated with the positive phase margin (indicating the bandwidth) at the ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop cuts are
selected as the closed-loop metrics of interest. Figure 7 displays the variation in the disk margin at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑
loop cuts with respect to the proposed metrics. Similarly, in Figure 8, the gain crossover frequency associated with the
positive phase margin at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop cuts are plotted against these metrics. In both figures, the results for
𝐶𝑛𝑜𝑚 are represented with solid lines.

As the operating condition departs from P0 and min SFE, max SFE, 𝜅, 𝛾, 𝛿𝐼 diverge from their ideal values, control
allocation effectiveness degrades. In the meanwhile, it is also evident that the closed-loop metrics deviate from their
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Fig. 5 Variation of control derivatives across the normalized operating envelope P. Blue ( ) and red ( )
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Fig. 6 Proposed metrics indicating control allocation effectiveness vs. 𝐿 𝛿𝑎 (variations in other control derivatives
can be found in Figure 5). Solid and dashed lines depict the results with nominal and scheduled control allocators,
respectively. Blue ( ) and red ( ) colors represent normalized operating envelope intervals P− and P+.

nominal design values. In particular, deterioration takes place in disk margin across P− and 𝜔𝑝𝑚+ across P+ at ¤𝑝𝑐𝑚𝑑 , 𝜙,
and ¤𝑟𝑐𝑚𝑑 loop cuts. Worst-case control allocation effectiveness and closed-loop metrics with 𝐶𝑛𝑜𝑚 across the operating
envelope are provided at Table 1 along with their design (ideal) values.

Table 1 Worst-case metrics across the operating envelope with nominal and scheduled control allocators.

Metric Design Value at P0 Worst-case Value with 𝐶𝑛𝑜𝑚 Worst-case Value with 𝐶 (𝜌𝑚)
min SFE 1 -0.47 (𝜌 = 1) 0.83 (𝜌 = −0.48)
max SFE 1 1.53 (𝜌 = −1) 1.09 (𝜌 = 0.86)
𝜅 1 19.8 (𝜌 = 1) 1.85 (𝜌 = −0.48)
𝛾 0 3.48 (𝜌 = −1) 0.56 (𝜌 = 0.86)
𝛿𝐼 0 3.53 (𝜌 = −1) 0.58 (𝜌 = −0.48)
Disk M. at ¤𝑝𝑐𝑚𝑑 0.61 0.39 (𝜌 = −1) 0.58 (𝜌 = 0.86)
𝜔𝑝𝑚+ at ¤𝑝𝑐𝑚𝑑 (rad/s) 6.49 1.49 (𝜌 = 1) 6.02 (𝜌 = −0.86)

B. Effectiveness of scheduled control allocator
Next, influence of scheduled control allocator, 𝐶 (𝜌𝑚), on the allocation effectiveness and closed-loop metrics is

analyzed. The results with𝐶 (𝜌𝑚) are represented in Figures 6, 7, and 8 with dashed lines. Figure 6 shows that deviation
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Fig. 7 Proposed metrics indicating control allocation effectiveness vs. disk margin at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop
cuts. Blue ( ) and red ( ) colors represent normalized operating envelope intervals P− and P+. Solid and
dashed lines depict results with nominal and scheduled control allocator.

of the proposed metrics, min SFE, max SFE, 𝜅, 𝛾, 𝛿𝐼 , from their ideal values across P is quite limited with 𝐶 (𝜌𝑚)
compared to 𝐶𝑛𝑜𝑚. This suggests notable improvement in the control allocation effectiveness. Similar observation can
be made for the closed-loop metrics according to Figures 7 and 8. Departure of the disk margin and 𝜔𝑝𝑚+ from their
design values substantially diminishes upon scheduling of the control allocator. In Table 1, the worst-case metrics with
𝐶𝑛𝑜𝑚 and 𝐶 (𝜌𝑚) across P are tabulated, which quantify these observations.

C. Detection of reversals in the control effectiveness of actuators
Aileron control effectiveness sign reversal is a phenomenon observed in fixed-wing aircraft with high-aspect ratio,

flexible wings [24]. This section assesses the impact of aileron control effectiveness sign reversal on the overall control
allocation effectiveness by varying 𝐿 𝛿𝑎. Different from the numerical examples used in Sections V.A and V.B, here,
only 𝐿 𝛿𝑎 is swept from its nominal value at P0 towards 0, while the remaining control derivatives are unchanged.

Figure 9 shows divergence of the proposed metrics, min SFE, 𝜅, 𝛾, 𝛿𝐼 , from their nominal values as 𝐿 𝛿𝑎 is swept
towards 0. In particular, min SFE metric approaches 0 as 𝐿 𝛿𝑎 approaches 0, indicating notable attenuation in loop gain
at a virtual control channel. Examination of the commanded-to-actual virtual control matrix suggests that decreasing
min SFE corresponds to the ¤𝑝𝑐𝑚𝑑 channel. In addition, 𝜅 increases rapidly, pointing to strengthening directionality
in control allocation. Furthermore, increase in 𝛾 suggests that as direct control authority degrades at ¤𝑝𝑐𝑚𝑑 virtual
control channel, undesirable coupling across different channels emerges. The degrading control allocation effectiveness
presents itself in the 𝜔𝑝𝑚+ at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop cuts, as depicted in Figure 10. The bandwidth at ¤𝑝𝑐𝑚𝑑 , 𝜙 loop
cuts approach to 0 as does min SFE. Accordingly, as shown in Figure 11, the steady-state error in step response of 𝜙
with respect to 𝜙𝑐𝑚𝑑 increases as 𝐿 𝛿𝑎 approaches 0 and, as its sign reverses, the system becomes unstable.
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Fig. 8 Proposed metrics indicating control allocation effectiveness vs. gain crossover frequency associated with
the positive phase margin at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop cuts. Blue ( ) and red ( ) colors represent normalized
operating envelope intervals P− and P+. Solid and dashed lines depict results with nominal and scheduled control
allocator.

D. Impact of undetected actuator failure on control allocation effectiveness
Next, an analysis is performed to assess how the proposed metrics degrade when the control allocator is unaware of

actuator failures. For this scenario, one of the rudders, 𝛿𝑟1 , is considered to be failed, yielding a fully actuated system
with 𝑛𝑢 = 𝑛𝑣 = 3. A scheduled control allocator, 𝐶 (𝜌𝑚), is used across the operating envelope, P. To study the effect
of undetected actuator failure on control allocation effectiveness, the proposed metrics are compared between two cases:
(i) undetected actuator failure and (ii) detected actuator failure with a control reallocation as described in Section IV.C.3.

Figure 12 depicts how min SFE, max SFE, 𝜅, 𝛾 and 𝛿𝐼 vary across P with undetected (solid lines) and detected
(dashed lines) 𝛿𝑟1 failures. While all proposed metrics diverge from their ideal values for the undetected case, it is
worth noting that min SFE decreases to -0.44 in P+. The sign reversal suggests that the used control allocator is a poor
candidate with 𝛿𝑟1 failure. The influence of degraded allocation effectiveness is evident in the disk margin deterioration
to 0.2 at ¤𝑟𝑐𝑚𝑑 loop cut. In contrast, upon detection of the failure and corresponding control reallocation, both proposed
metrics and the disk margin at ¤𝑟𝑐𝑚𝑑 loop cut show improvement with limited variance from their design values.

E. Adjustment of metrics to account for detected actuator failures leading to under-actuation
In this section, the adjustment required on the computation of proposed metrics is discussed in the event of detected

actuator failures leading to under-actuation. For this scenario, one rudder 𝛿𝑟2 and one aileron 𝛿𝛼2 are considered to be
failed, yielding an under-actuated system with 𝑛𝑢 = 2 and 𝑛𝑣 = 3. To address the under-actuation, a control reallocation
is performed that excludes the ¤𝑣𝑐𝑚𝑑 control degree of freedom. Furthermore, it is considered that this control allocator
does not have access to a measurement of the operating condition.

As discussed in Section III.C.2, the proposed metrics need to be computed from submatrix 𝑊 ′(𝜌) ∈ R2×2 of
𝑊 (𝜌) ∈ R3×3, which is extracted by omitting the rows and the columns corresponding to the removed control degree
of freedom. This operation is presented in Equation (17) at the design condition P0, and its impact on the allocation
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Fig. 9 Proposed metrics indicating control allocation effectiveness vs. 𝐿 𝛿𝑎, as 𝐿 𝛿𝑎 is swept from its nominal
value at P0 towards 0.
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Fig. 10 Proposed metrics indicating control allocation effectiveness vs. gain crossover frequency associated with
the positive phase margin at ¤𝑝𝑐𝑚𝑑 , 𝜙, and ¤𝑟𝑐𝑚𝑑 loop cuts. Results are obtained by sweeping 𝐿 𝛿𝑎 from its nominal
value at P0 towards 0, while other control derivatives are unchanged.

effectiveness metrics is depicted in Figure 13.

𝑊 (0) =

0 0.001 −0.1689
0 1 0
0 0 1

 (17)

In Figure 13, variation of min SFE, max SFE, 𝜅, 𝛾 and 𝛿𝐼 metrics across P is plotted without (solid lines) and with
(dashed lines) the adjustment. At P0, adjusted metrics are at their design values as expected, while the unadjusted
metrics are off. Note that min SFE = 0 given the first diagonal element of𝑊 (0) in Equation (17) when the adjustment is
ignored. Furthermore, while not visualized on the figure, 𝜅 → ∞ due to the rank deficient 𝑊 (0). These issues are
resolved when the metrics are computed from the submatrix𝑊 ′(0) = 𝐼2.

Disk margin at ¤𝑝𝑐𝑚𝑑 loop cut is identical in both cases across P. This is expected, as only difference between
two cases is in the computation of control allocation metrics which affects neither the control allocator nor the rest of
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Fig. 12 Proposed metrics indicating control allocation effectiveness vs. disk margin at ¤𝑟𝑐𝑚𝑑 loop cut. Blue ( )
and red ( ) colors represent normalized operating envelope intervals P− and P+. Solid and dashed lines depict
undetected and detected 𝛿𝑟1 failure.

closed-loop system. In addition, max SFE with and without the adjustment are identical across P, as max SFE is not
affected by the omitted row or column.
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Fig. 13 Proposed metrics indicating control allocation effectiveness vs. disk margin at ¤𝑝𝑐𝑚𝑑 loop cut. Blue ( )
and red ( ) colors represent normalized operating envelope intervals P− and P+. Solid and dashed lines depict
unadjusted and adjusted allocation effectiveness metrics. 𝛿𝛼2 and 𝛿𝑟2 have failed in this case and the control
allocator, without access to 𝜌𝑚, is designed to unallocate ¤𝑣𝑐𝑚𝑑 control degree of freedom.

VI. Conclusions
This paper proposes various metrics that measure the effectiveness of control allocation. These metrics are computed

from the respective linearizations of the plant and the control allocation algorithm. They are shown to be correlated with
the linear closed-loop performance and robustness metrics, as well as the grid density of the variables used to schedule
the control allocation algorithm. In addition, the proposed metrics can be used to detect sign reversals in the control
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effectiveness of individual actuators. The paper shows that the metrics may be adjusted such that they remain useful as a
measure of the effectiveness of control allocation even under actuator saturations or failures. The proposed metrics not
only provide the means to assess the control allocation effectiveness and its impact on the closed-loop performance and
robustness metrics, but they can also guide the design of control allocation algorithms.

Appendix
Table 2 lists the values of the inertial and trim parameters referenced previously in Equation (9).

Table 2 Inertial and trim parameters.

Parameter Value
𝐼𝑥 0.089 kg m2

𝐼𝑦 0.144 kg m2

𝐼𝑧 0.162 kg m2

𝐼𝑥𝑧 0.014 kg m2

𝑔 9.81 m s−2

𝑢0 18.4 m s−1

𝑤0 4.74 m s−1

𝜃0 14.4 deg

Table 3 lists the values of the aerodynamic stability and control derivatives referenced previously in Equation 9.

Table 3 Aerodynamic stability and control derivatives.

Parameter Nominal value (𝜇) Percent standard deviation
(
𝜎
𝜇
× 100

)
𝑌𝑣 −0.64 5.17
𝐿𝑣 −2.02 9.16
𝑁𝑣 1.30 3.49
𝑌𝑝 −4.28 20.20
𝐿𝑝 −12.47 8.20
𝑁𝑝 0.86 16.30
𝑌𝑟 0.19 0.74
𝐿𝑟 4.05 16.82
𝑁𝑟 −3.09 6.58
𝑌𝛿𝑎 −2.06 38.42
𝐿𝛿𝑎 −139.10 7.25
𝑁𝛿𝑎 17.2 7.07
𝑌𝛿𝑟 2.98 11.96
𝐿𝛿𝑟 6.52 41.94
𝑁𝛿𝑟 −26.4 4.34

The control derivatives of the individual ailerons 𝛿𝑎1,2 and rudders 𝛿𝑟1,2 are related to the values in Table 3 as follows.

𝐵′ =


𝑌𝛿𝑎1

𝑌𝛿𝑎2
𝑌𝛿𝑟1

𝑌𝛿𝑟2
𝐿𝛿𝑎1

𝐿𝛿𝑎2
𝐿𝛿𝑟1

𝐿𝛿𝑟2
𝑁𝛿𝑎1

𝑁𝛿𝑎2
𝑁𝛿𝑟1

𝑁𝛿𝑟2
0 0 0 0
0 0 0 0

 =


0.6𝑌𝛿𝑎 0.4𝑌𝛿𝑎 0.6𝑌𝛿𝑟 0.4𝑌𝛿𝑟
0.5 𝐿𝛿𝑎 0.5 𝐿𝛿𝑎 0.5 𝐿𝛿𝑟 0.5 𝐿𝛿𝑟

0.4 𝑁𝛿𝑎 0.6 𝑁𝛿𝑎 0.4 𝑁𝛿𝑟 0.6 𝑁𝛿𝑟

0 0 0 0
0 0 0 0

 (18)

Table 4 lists the gains of the feedback controller �̄� (𝑠).

Table 4 Gains of the feedback controller �̄� (𝑠).

Gain Value
𝐾 ¤𝑣𝜙 −0.2
𝐾 ¤𝑝𝜙 (𝑠) 40 + 8

𝑠

𝐾 ¤𝑝𝑝 −12
𝐾 ¤𝑟𝑟 −10

15



Acknowledgments
This work was funded by Amazon.com Services LLC.

References
[1] Yeh, Y. C., “Triple-triple redundant 777 primary flight computer,” 1996 IEEE Aerospace Applications Conference. Proceedings,

Vol. 1, 1996, pp. 293–307 vol.1. https://doi.org/10.1109/AERO.1996.495891.

[2] Nguyen, N. T., Ting, E., Chaparro, D., Drew, M. C., and Shan-Min Swei, S., “Multi-Objective Flight Control for Drag
Minimization and Load Alleviation of High-Aspect Ratio Flexible Wing Aircraft,” 58th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, 2007. https://doi.org/10.2514/6.2017-1589.

[3] Boskovic, J. D., and Mehra, R. K., “Control allocation in overactuated aircraft under position and rate limiting,” Proceedings of
the 2002 American Control Conference (IEEE Cat. No.CH37301), Vol. 1, 2002, pp. 791–796 vol.1. https://doi.org/10.1109/
ACC.2002.1024911.

[4] Blight, J. D., Dailey, R. L., and Gangsaas, D., “Practical control law design for aircraft using multivariable techniques,”
International Journal of Control, Vol. 59, No. 1, 1994, pp. 93–137. https://doi.org/10.1080/00207179408923071.

[5] Leith, D. J., and Leithead, W. E., “Survey of gain-scheduling analysis and design,” International Journal of Control, Vol. 73,
No. 11, 2000, pp. 1001–1025. https://doi.org/10.1080/002071700411304.

[6] Horn, R. A., and Johnson, C. R., Matrix Analysis, Cambridge University Press, 1985. https://doi.org/10.1017/
CBO9780511810817.

[7] Adams, R. J., Buffington, J. M., Sparks, A. G., and Banda, S. S., Robust Multivariable Flight Control, Springer London, 1994.
https://doi.org/10.1007/978-1-4471-2111-4.

[8] Durham, W. C., “Constrained control allocation,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 4, 1993, pp.
717–725. https://doi.org/10.2514/3.21072.

[9] Bodson, M., “Evaluation of Optimization Methods for Control Allocation,” Journal of Guidance, Control, and Dynamics,
Vol. 25, No. 4, 2002, pp. 703–711. https://doi.org/10.2514/2.4937.

[10] Bodson, M., and Frost, S. A., “Load Balancing in Control Allocation,” Journal of Guidance, Control, and Dynamics, Vol. 34,
No. 2, 2011, pp. 380–387. https://doi.org/10.2514/1.51952.

[11] Poonamallee, V. L., Yurkovich, S., Serrani, A., and Doman, D. B., “A nonlinear programming approach for control allocation,”
Proceedings of the 2004 American Control Conference, Vol. 2, 2004, pp. 1689–1694 vol.2. https://doi.org/10.23919/ACC.2004.
1386822.

[12] Johansen, T. A., Fossen, T. I., and Berge, S. P., “Constrained nonlinear control allocation with singularity avoidance using
sequential quadratic programming,” IEEE Transactions on Control Systems Technology, Vol. 12, No. 1, 2004, pp. 211–216.
https://doi.org/10.1109/TCST.2003.821952.

[13] Yang, Y., and Gao, Z., “A New Method for Control Allocation of Aircraft Flight Control System,” IEEE Transactions on
Automatic Control, Vol. 65, No. 4, 2020, pp. 1413–1428. https://doi.org/10.1109/TAC.2019.2918122.

[14] Johansen, T. A., and Fossen, T. I., “Control allocation – A survey,” Automatica, Vol. 49, No. 5, 2013, pp. 1087–1103.
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.035.

[15] Zhang, Y., Sivasubramaniam, S. V., Jiang, B., and Theilliol, D., “Reconfigurable Control Allocation against Aircraft
Control Effector Failures,” 2007 IEEE International Conference on Control Applications, 2007, pp. 1197–1202. https:
//doi.org/10.1109/CCA.2007.4389398.

[16] Ducard, G. J. J., Fault-Tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles,
Springer, 2009.

[17] Tohidi, S. S., and Yildiz, Y., “Discrete Adaptive Control Allocation,” 2021 American Control Conference (ACC), 2021, pp.
3731–3736. https://doi.org/10.23919/ACC50511.2021.9482628.

[18] Dorobantu, A., “Test Platforms for Model-Based Flight Research,” Ph.D. thesis, University of Minnesota, Twin Cities, 2013.

[19] Skogestad, S., and Postlethwaite, I., Multivariable Feedback Control: Analysis and Design, Wiley, 2005.

16

https://doi.org/10.1109/AERO.1996.495891
https://doi.org/10.2514/6.2017-1589
https://doi.org/10.1109/ACC.2002.1024911
https://doi.org/10.1109/ACC.2002.1024911
https://doi.org/10.1080/00207179408923071
https://doi.org/10.1080/002071700411304
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1007/978-1-4471-2111-4
https://doi.org/10.2514/3.21072
https://doi.org/10.2514/2.4937
https://doi.org/10.2514/1.51952
https://doi.org/10.23919/ACC.2004.1386822
https://doi.org/10.23919/ACC.2004.1386822
https://doi.org/10.1109/TCST.2003.821952
https://doi.org/10.1109/TAC.2019.2918122
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.035
https://doi.org/10.1109/CCA.2007.4389398
https://doi.org/10.1109/CCA.2007.4389398
https://doi.org/10.23919/ACC50511.2021.9482628


[20] Durham, W., Bordignon, K. A., and Beck, R., Aircraft Control Allocation, Wiley, 2017.

[21] Seiler, P., Packard, A., and Gahinet, P., “An Introduction to Disk Margins [Lecture Notes],” IEEE Control Systems Magazine,
Vol. 40, No. 5, 2020, pp. 78–95. https://doi.org/10.1109/MCS.2020.3005277.

[22] Åström, K. J., and Murray, R. M., Feedback Systems, Princeton University Press, 2019.

[23] Doyle, J., Francis, B., and Tannenbaum, A., Feedback Control Theory, Macmillan Publishing Company, 1990.

[24] Bueno, D. D., and Dowell, E. H., “Revisiting the Fundamentals of Control Surface Reversal Including Nonlinear Effects,”
Journal of Aircraft, Vol. 57, No. 6, 2020, pp. 1212–1219. https://doi.org/10.2514/1.C035885.

17

https://doi.org/10.1109/MCS.2020.3005277
https://doi.org/10.2514/1.C035885

	Introduction
	Problem formulation
	General closed-loop system
	Assumptions
	Decoupling the design of barK and C

	Metrics that measure the effectiveness of control allocation
	Commanded-to-actual virtual control matrix
	Control allocation effectiveness metrics
	Scale factor errors
	Off-diagonal norm
	Singular values and condition number
	Distance-to-identity

	Impact of actuator saturation and failures
	Saturation or undetected failure
	Detected failure
	Frequency-dependent metrics


	Numerical example
	Plant and actuator dynamics models
	Plant model G(s,)
	Decomposition of G(s,)
	Variation of J() over the operating envelope P
	Actuator dynamics model (s)

	Feedback controller barK(s)
	Control allocator C(m)
	Nominal control allocator
	Scheduled control allocator
	Degraded control allocator


	Results
	Correlation between proposed metrics and linear closed-loop metrics
	Effectiveness of scheduled control allocator
	Detection of reversals in the control effectiveness of actuators
	Impact of undetected actuator failure on control allocation effectiveness
	Adjustment of metrics to account for detected actuator failures leading to under-actuation

	Conclusions

