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What is Control Theory?

What is Control Theory?

I Given some system

I Can we use feedback to control?

I Make an unstable system stable

I Make a stable system behave more like we want

I Can we make it robust to unmodeled plant behavior?

I Can we guarantee good behavior?
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The Complex Frequency Domain

Complex Exponentials

Complex Exponentials

I Need to analyze system behavior in usual time domain (eg,
how system behaves as a function of time) as well as
frequency domain (eg, how system behaves as a function of
frequency)

I Euler’s formula: e jx = cos(x) + jsin(x)
I Acos(ωt + φ) = T ∗ cos(ωt)
I Ae j(ωt+φ) = T ∗ e jωt
I T = Ae jφ

I T describes a phase change and amplitude change of a
sinusoid at one particular frequency

I For all linear time invariant (LTI) systems input and output
frequency are equal. Only phase and gain may change...
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The Complex Frequency Domain

Complex Exponentials

Complex Exponentials

I Given a complex exponential, Ae jφ, how do we solve for φ and
A?

I Example: 4e j2 = 4cos(2) + 4jsin(2) = −1.66 + 3.64j

I Amplitude is
√
Re2 + Im2 =

√
−1.662 + 3.642 = 4

I Phase is atan2(Im,Re) = atan2(3.64,−1.66) = 2



Controls 101

The Complex Frequency Domain

The Laplace Transform

The Laplace Transform

I Laplace transform allows us to convert back and forth from
time (t) to complex frequency (s) domain!

I A single complex exponential, Ae jx , can describe phase and
gain change at one frequency

I What we really want to know is how they change as a
function of frequency

I Honestly, the wikipedia page is a great resource but what are
the highlights of the s-domain?
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The Complex Frequency Domain

The Laplace Transform

The Laplace Transform

I s is shorthand for jω where ω is the excitation frequency

I Integration in the time domain is division by s in the s-domain

I Differentiation in the time domain is multiplication by s in the
s-domain

I Convolution in time domain is multiplication in the s-domain



Controls 101

The Complex Frequency Domain

Frequency Response

Frequency Response

Model simple RC circuit
I Time-domain:

I vo = vi − Ri and i = Cv̇o
I v̇o = vi−vo

RC

I S-domain:

I sVo = Vi−Vo
RC

I Rearranged: Vo = 1
sRC+1

Vi

I 1
sRC+1

is the family of complex exponentials that
describe the gain/phase change from Vi to Vo

I What is gain/phase change for RC = 1 at

frequency ω = 1 [meaning s = jω = j ]

I At this frequency: 1
sRC+1

= 1
j+1

= 0.5− 0.5j
I Recall that gain is√

0.52 + 0.52 = 0.707 = −3dB
I Recall that phase is tan−1(−0.5

0.5
) = −45◦

I How about the rest of the frequencies?
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The Complex Frequency Domain

Frequency Response

Frequency Response
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The Complex Frequency Domain

Transfer Functions

Transfer Functions

I A transfer function is the s-domain output divided by the
input

I Y (s) = s+γ
(s+α)(s+β)U(s)

I Y (s)
U(s) = s+γ

(s+α)(s+β)
I Zeros are values of s which make the numerator of the TF

zero (eg, −γ)
I Poles are values of s which make the denominator of the TF

zero (eg, −α, −β)
I A system is stable if all its poles have a negative real

component
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Worked Example

Plant Model

Plant Model

I Consider a simple mass/spring system:

I Assume we have a force input that acts on the mass, u

I Goal, command the position of the block using our force input

I Time domain EOMs: ẍ = −kx+u
m

I S-domain EOMs: s2X = −kX+U
m

I Rearranged: X
U = 1

s2m+k

I System is clearly not stable as poles are s = ±
√

−k
m

I Remember, only stable if all poles have negative real
component!

I How about simple proportional control?
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Worked Example

Proportional Control

Proportional Control

I Y = 1
s2m+k

Kp(U − Y )

I Y
U =

Kp

s2m+k+Kp

I Roots: s = ±
√

−k−Kp

m

I Not stable. What about PD control...
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Worked Example

Proportional Derivative Control

Proportional Derivative Control

I Y = 1
s2m+k

(Kp + sKd)(U − Y )

I Y
U =

sKd+Kp

s2m+sKd+Kp+k

I Roots: s =
−Kd±

√
K2
d−4m(Kp+k)

2m

I Can force Re(s) < 0 through gain choices!
I What about tracking a step command, U?

I Transfer function gain when s = jω = 0 is
Kp

k+Kp
. Want this to

be 1!

I What about PID control?
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Worked Example

Proportional Integral Derivative Control

Proportional Integral Derivative Control

I Y = 1
s2m+k

(Kp + sKd + 1
sKi )(U − Y )

I Y
U =

s2Kd+sKp+Ki

s3m+s2Kd+s(Kp+k)+Ki

I Roots are... complicated, but can be made stable!
I What about tracking a step command, U?

I Transfer function gain when s = jω = 0 is Ki

Ki
= 1!

I So how should we pick our gains?
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Worked Example

Gain & Phase Margin

Gain & Phase Margin
I Gain, phase margin relate to

robustness to unmodeled plant
behavior

I Y
U

=
s2Kd+sKp+Ki

s3m+s2Kd+s(Kp+Ki )+k

I Pick m = 1 k = 0.1 Kd = 1 Kp = 1
Ki = 1

I Assume there is a gain on the input

of G(s) of Ke

I Y
U

=
Ke (s

2Kd+sKp+Ki )

s3m+s2KeKd+s(KeKp+k)+KeKi
I Ke = 0.9 = −1 dB gives

unstable poles, not awesome

I Assume there is a phase delay on the

input of G(s) of e jφ

I Y
U

=

ejφ(s2Kd+sKp+Ki )

s3m+s2ejφKd+s(ejφKp+k)+ejφKi
I φ ≈ 5.7◦ gives unstable poles,

also not awesome

I Consequence of bad margins, system
may be unstable if real plant does
not closely match assumed plant
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Worked Example

Proportional Integral Derivative Control with LQR Gains

Proportional Integral Derivative Control with LQR Gains
I Linear Quadratic Regulators (LQR) are optimal (in some

sense) controllers which guarantee certain stability
I At least 6dB of gain margin and 60◦ of phase margin

I Deriving, explaining LQR techniques is an L&L unto itself
I LQR suggests the following gains for our system

I Kd = 0.18 Kp = 0.017 Ki = 0.01
I Now have -301 dB of gain margin, 70 deg phase margin

(a) Naive gains
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(b) LQR gains
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Proportional Integral Derivative Control with LQR Gains
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Attenuate plant input by 2 dB...
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Advanced Control Techniques

I Adaptive control: Gains change to accomodate changes in
plant

I e.g. Control airplane where mass changes over time due to fuel
burn

I Bang-Bang control: All on/off control input
I Typically more time optimal that other approaches. ”Infinite

gain” in some sense.

I H-infinity control: Bound the output response for a given
input disturbance

I e.g. Know max wind gust, design control so that airplane pitch
changes perturbs by no more than defined amount
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