Controls 101

David Friedman

October 11, 2015

Agenda What is Control Theory? The Complex Frequency Domain **Complex Exponentials** The Laplace Transform Frequency Response Transfer Functions Worked Example Plant Model Proportional Control **Proportional Derivative Control** Proportional Integral Derivative Control Gain & Phase Margin Proportional Integral Derivative Control with LQR Gains

Advanced Control Techniques

What is Control Theory?

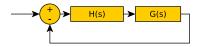
Given some system

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What is Control Theory?

Given some system

Can we use feedback to control?



- Make an unstable system stable
- Make a stable system behave more like we want
- Can we make it robust to unmodeled plant behavior?
- Can we guarantee good behavior?

— The Complex Frequency Domain

Complex Exponentials

Complex Exponentials

- Need to analyze system behavior in usual time domain (eg, how system behaves as a function of time) as well as frequency domain (eg, how system behaves as a function of frequency)
- Euler's formula: $e^{jx} = cos(x) + jsin(x)$
 - $A\cos(\omega t + \phi) = T * \cos(\omega t)$
 - $Ae^{j(\omega t + \phi)} = T * e^{j\omega t}$
 - $T = Ae^{j\phi}$
- T describes a phase change and amplitude change of a sinusoid at one particular frequency
- ► For all linear time invariant (LTI) systems input and output frequency are equal. Only phase and gain may change...

- The Complex Frequency Domain

Complex Exponentials

Complex Exponentials

Given a complex exponential, Ae^{jφ}, how do we solve for φ and A?

- Example: $4e^{j2} = 4cos(2) + 4jsin(2) = -1.66 + 3.64j$
- Amplitude is $\sqrt{Re^2 + Im^2} = \sqrt{-1.66^2 + 3.64^2} = 4$
- ▶ Phase is *atan*2(*Im*, *Re*) = *atan*2(3.64, -1.66) = 2

— The Complex Frequency Domain

└─ The Laplace Transform

The Laplace Transform

- Laplace transform allows us to convert back and forth from time (t) to complex frequency (s) domain!
- A single complex exponential, Ae^{jx}, can describe phase and gain change at one frequency
- What we really want to know is how they change as a *function* of frequency
- Honestly, the wikipedia page is a great resource but what are the highlights of the s-domain?

— The Complex Frequency Domain

└─ The Laplace Transform

The Laplace Transform

- \blacktriangleright s is shorthand for $j\omega$ where ω is the excitation frequency
- Integration in the time domain is division by s in the s-domain
- Differentiation in the time domain is multiplication by s in the s-domain
- Convolution in time domain is multiplication in the s-domain

Table of Laplace Transforms								
	$f(t) = \mathfrak{L}^{-1} \{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$			
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$			
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$			
5.	\sqrt{t}	$rac{\sqrt{\pi}}{2s^{rac{3}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,\ldots$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$			
7.	sin(at)	$\frac{a}{s^2+a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$			

- The Complex Frequency Domain

Frequency Response

Frequency Response

Model simple RC circuit

Time-domain:

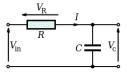
•
$$v_o = v_i - Ri$$
 and $i = C\dot{v}_o$

$$\dot{v}_o = \frac{v_i - v_o}{RC}$$

•
$$sV_o = \frac{V_i - V_o}{RC}$$

• Rearranged: $V_o = \frac{1}{sRC+1}V_i$

- ¹/_{sRC+1} is the family of complex exponentials that describe the gain/phase change from V_i to V_o
- What is gain/phase change for RC = 1 at frequency ω = 1 [meaning s = jω = j]



— The Complex Frequency Domain

Frequency Response

Frequency Response

Model simple RC circuit

Time-domain:

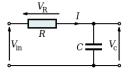
•
$$v_o = v_i - Ri$$
 and $i = C\dot{v}_o$

$$\dot{v}_o = \frac{v_i - v_o}{RC}$$

•
$$sV_o = \frac{V_i - V_o}{RC}$$

• Rearranged: $V_o = \frac{1}{sRC+1}V_i$

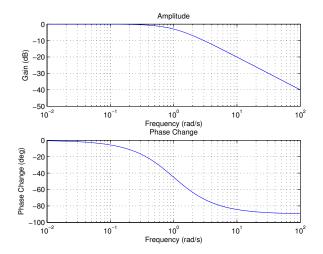
- ¹/_{sRC+1} is the family of complex exponentials that describe the gain/phase change from V_i to V_o
- What is gain/phase change for RC = 1 at frequency ω = 1 [meaning s = jω = j]
 - At this frequency: $\frac{1}{sRC+1} = \frac{1}{i+1} = 0.5 0.5j$
 - Recall that gain is $\sqrt{0.5^2 + 0.5^2} = 0.707 = -3dB$
 - Recall that phase is $tan^{-1}(\frac{-0.5}{0.5}) = -45^{\circ}$
- How about the rest of the frequencies?



The Complex Frequency Domain

Frequency Response

Frequency Response



▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- The Complex Frequency Domain

Transfer Functions

Transfer Functions

A transfer function is the s-domain output divided by the input

•
$$Y(s) = \frac{s+\gamma}{(s+\alpha)(s+\beta)}U(s)$$

$$\frac{Y(s)}{U(s)} = \frac{s+\gamma}{(s+\alpha)(s+\beta)}$$

- ► Zeros are values of s which make the numerator of the TF zero (eg, -γ)
- Poles are values of s which make the denominator of the TF zero (eg, −α, −β)

 A system is stable if all its poles have a negative real component

Controls 101	
Worked Examp	le
└─ Plant Model	

Consider a simple mass/spring system:

- Assume we have a force input that acts on the mass, u
- Goal, command the position of the block using our force input

• Time domain EOMs: $\ddot{x} = \frac{-kx+u}{m}$

Controls 101	
Worked Examp	le
└─ Plant Model	

Consider a simple mass/spring system:

- Assume we have a force input that acts on the mass, u
- Goal, command the position of the block using our force input

• Time domain EOMs: $\ddot{x} = \frac{-kx+u}{m}$

• S-domain EOMs:
$$s^2 X = \frac{-kX+U}{m}$$

Controls 101
-Worked Example
└─ Plant Model

Consider a simple mass/spring system:

- Assume we have a force input that acts on the mass, u
- Goal, command the position of the block using our force input

- Time domain EOMs: $\ddot{x} = \frac{-kx+u}{m}$
- S-domain EOMs: $s^2 X = \frac{-kX+U}{m}$

• Rearranged:
$$\frac{X}{U} = \frac{1}{s^2 m + k}$$

• Consider a simple mass/spring system:

- Assume we have a force input that acts on the mass, u
- Goal, command the position of the block using our force input
- Time domain EOMs: $\ddot{x} = \frac{-kx+u}{m}$
- S-domain EOMs: $s^2 X = \frac{-kX+U}{m}$
- Rearranged: $\frac{X}{U} = \frac{1}{s^2 m + k}$
- System is clearly not stable as poles are $s = \pm \sqrt{rac{-k}{m}}$
 - Remember, only stable if all poles have negative real component!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

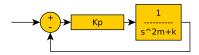
How about simple proportional control?

Controls 101

Worked Example

Proportional Control

Proportional Control



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proportional Control

Proportional Control



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$Y = \frac{1}{s^2 m + k} K_p (U - Y)$$

• $\frac{Y}{U} = \frac{K_p}{s^2 m + k + K_p}$
• Roots: $s = \pm \sqrt{\frac{-k - K_p}{m}}$
• Not stable. What about PI

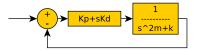
Not stable. What about PD control...

Controls 101

Worked Example

Proportional Derivative Control

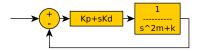
Proportional Derivative Control



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proportional Derivative Control

Proportional Derivative Control



•
$$Y = \frac{1}{s^2 m + k} (K_p + sK_d) (U - Y)$$

• $\frac{Y}{U} = \frac{sK_d + K_p}{s^2 m + sK_d + K_p + k}$
• Roots: $s = \frac{-K_d \pm \sqrt{K_d^2 - 4m(K_p + k)}}{2m}$
• Can force $Re(s) < 0$ through gain choices!

- ▶ What about tracking a step command, *U*?
 - ► Transfer function gain when $s = j\omega = 0$ is $\frac{K_p}{k+K_p}$. Want this to be **1**!

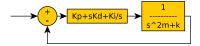
What about PID control?

Controls 101

Worked Example

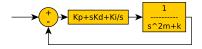
Proportional Integral Derivative Control

Proportional Integral Derivative Control



Proportional Integral Derivative Control

Proportional Integral Derivative Control



$$\blacktriangleright Y = \frac{1}{s^2 m + k} (K_p + sK_d + \frac{1}{s}K_i)(U - Y)$$

$$Y_{\overline{U}} = \frac{s^2 K_d + s K_p + K_i}{s^3 m + s^2 K_d + s (K_p + k) + K_i}$$

- Roots are... complicated, but can be made stable!
- ▶ What about tracking a step command, U?

• Transfer function gain when $s = j\omega = 0$ is $\frac{K_i}{K_i} = 1!$

So how should we pick our gains?

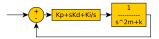
Gain & Phase Margin

Gain & Phase Margin

 Gain, phase margin relate to robustness to unmodeled plant behavior

$$\blacktriangleright \quad \frac{Y}{U} = \frac{s^2 K_d + s K_p + K_i}{s^3 m + s^2 K_d + s (K_p + K_i) + k}$$

• Pick m = 1 k = 0.1 $K_d = 1$ $K_p = 1$ $K_i = 1$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Gain & Phase Margin

Gain & Phase Margin

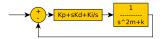
 Gain, phase margin relate to robustness to unmodeled plant behavior

$$\blacktriangleright \quad \frac{Y}{U} = \frac{s^2 K_d + s K_p + K_i}{s^3 m + s^2 K_d + s (K_p + K_i) + k}$$

Pick m = 1 k = 0.1 K_d = 1 K_p = 1 K_i = 1

► Assume there is a gain on the input of G(s) of K_e ► $\frac{Y}{U} = \frac{K_e(s^2K_d + sK_p + K_i)}{s^3m + s^2K_eK_d + s(K_eK_p + k) + K_eK_i}$ ► $K_e = 0.9 = -1$ dB gives

• $K_e = 0.9 = -1$ dB gives unstable poles, not awesome



Gain & Phase Margin

Gain & Phase Margin

 Gain, phase margin relate to robustness to unmodeled plant behavior

$$\blacktriangleright \quad \frac{Y}{U} = \frac{s^2 K_d + s K_p + K_i}{s^3 m + s^2 K_d + s (K_p + K_i) + k}$$

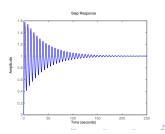
Pick m = 1 k = 0.1 K_d = 1 K_p = 1 K_i = 1

► Assume there is a gain on the input of G(s) of K_e ► $\frac{Y}{U} = \frac{K_e(s^2K_d + sK_p + K_i)}{s^3m + s^2K_eK_d + s(K_eK_p + k) + K_eK_i}$

► K_e = 0.9 = −1 dB gives unstable poles, not awesome

Assume there is a phase delay on the input of G(s) of e^{jφ}

$$\begin{array}{l} \bullet \quad \underbrace{\frac{Y}{U}}_{U} = \underbrace{e^{j\phi}(s^{2}K_{d}+sK_{p}+K_{i})}_{\overline{s^{3}m+s^{2}e^{j\phi}K_{d}}+s(e^{j\phi}K_{p}+k)+e^{j\phi}K_{i}} \\ \bullet \phi \approx 5.7^{\circ} \text{ gives unstable poles,} \end{array}$$



Proportional Integral Derivative Control with LQR Gains

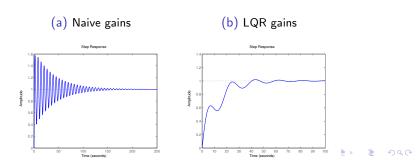
Proportional Integral Derivative Control with LQR Gains

- Linear Quadratic Regulators (LQR) are optimal (in some sense) controllers which guarantee certain stability
 - At least 6dB of gain margin and 60° of phase margin
- ► Deriving, explaining LQR techniques is an L&L unto itself
- LQR suggests the following gains for our system
 - $K_d = 0.18 \ K_p = 0.017 \ K_i = 0.01$
 - ▶ Now have -301 dB of gain margin, 70 deg phase margin

Proportional Integral Derivative Control with LQR Gains

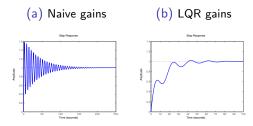
Proportional Integral Derivative Control with LQR Gains

- Linear Quadratic Regulators (LQR) are optimal (in some sense) controllers which guarantee certain stability
 - At least 6dB of gain margin and 60° of phase margin
- Deriving, explaining LQR techniques is an L&L unto itself
- LQR suggests the following gains for our system
 - $K_d = 0.18 \ K_p = 0.017 \ K_i = 0.01$
 - ▶ Now have -301 dB of gain margin, 70 deg phase margin



Proportional Integral Derivative Control with LQR Gains

Proportional Integral Derivative Control with LQR Gains

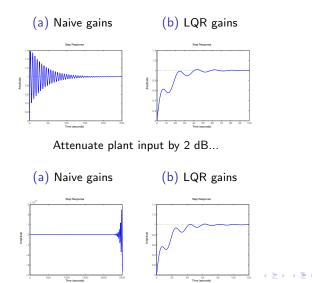


Attenuate plant input by 2 dB...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Proportional Integral Derivative Control with LQR Gains

Proportional Integral Derivative Control with LQR Gains



Advanced Control Techniques

- Adaptive control: Gains change to accomodate changes in plant
 - e.g. Control airplane where mass changes over time due to fuel burn
- Bang-Bang control: All on/off control input
 - Typically more time optimal that other approaches. "Infinite gain" in some sense.
- H-infinity control: Bound the output response for a given input disturbance
 - e.g. Know max wind gust, design control so that airplane pitch changes perturbs by no more than defined amount